Neurogenesis in the sea urchin embryo is initiated uniquely in three domains

Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2018-11, Vol.145 (21)
Hauptverfasser: McClay, David R, Miranda, Esther, Feinberg, Stacy L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Development (Cambridge)
container_volume 145
creator McClay, David R
Miranda, Esther
Feinberg, Stacy L
description Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.
doi_str_mv 10.1242/dev.167742
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132230068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-b0a0ed7bdb8c78529eb4ca2ae99c7aa10e0cba27857430bb76e7a5d89e01593d3</originalsourceid><addsrcrecordid>eNpVkFtLAzEQhYMotlZf_AGyjyKsTi5tmhdBijco-qLPIclO28hearJb6L83urXo0zCcjzNnDiHnFK4pE-ymwM01nUgp2AEZUiFlrihTh2QIagw5VYoOyEmMHwDAE3ZMBhwE5WOmhmT-gl1ollhj9DHzddauMItosi64VVqxsmHbZD-ab71psci62n92WG57PCBmRVMZX8dTcrQwZcSz3RyR94f7t9lTPn99fJ7dzXMnhGhzCwawkLawUyenKQZa4QwzqJSTxlBAcNawJEnBwVo5QWnGxVQh0LHiBR-R29533dkKC4d1G0yp18FXJmx1Y7z-r9R-pZfNRk-YAE55MrjcGYQmvRJbXfnosCxNjU0XNaOcMQ4wmSb0qkddaGIMuNifoaC_69epft3Xn-CLv8H26G_f_AtU4IKB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132230068</pqid></control><display><type>article</type><title>Neurogenesis in the sea urchin embryo is initiated uniquely in three domains</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>McClay, David R ; Miranda, Esther ; Feinberg, Stacy L</creator><creatorcontrib>McClay, David R ; Miranda, Esther ; Feinberg, Stacy L</creatorcontrib><description>Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.167742</identifier><identifier>PMID: 30413529</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Animals ; Body Patterning - genetics ; Bone Morphogenetic Proteins - metabolism ; Cell Lineage - genetics ; Embryo, Nonmammalian - metabolism ; Fibroblast Growth Factors - metabolism ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Lytechinus - embryology ; Lytechinus - genetics ; Lytechinus - metabolism ; Models, Biological ; Neurogenesis - genetics ; Nodal Protein - metabolism ; Signal Transduction ; Transcription Factors - metabolism</subject><ispartof>Development (Cambridge), 2018-11, Vol.145 (21)</ispartof><rights>2018. Published by The Company of Biologists Ltd.</rights><rights>2018. Published by The Company of Biologists Ltd 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-b0a0ed7bdb8c78529eb4ca2ae99c7aa10e0cba27857430bb76e7a5d89e01593d3</citedby><cites>FETCH-LOGICAL-c444t-b0a0ed7bdb8c78529eb4ca2ae99c7aa10e0cba27857430bb76e7a5d89e01593d3</cites><orcidid>0000-0003-1985-157X ; 0000-0001-8824-2183 ; 0000-0001-5834-3151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3676,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30413529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McClay, David R</creatorcontrib><creatorcontrib>Miranda, Esther</creatorcontrib><creatorcontrib>Feinberg, Stacy L</creatorcontrib><title>Neurogenesis in the sea urchin embryo is initiated uniquely in three domains</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.</description><subject>Animals</subject><subject>Body Patterning - genetics</subject><subject>Bone Morphogenetic Proteins - metabolism</subject><subject>Cell Lineage - genetics</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Regulatory Networks</subject><subject>Lytechinus - embryology</subject><subject>Lytechinus - genetics</subject><subject>Lytechinus - metabolism</subject><subject>Models, Biological</subject><subject>Neurogenesis - genetics</subject><subject>Nodal Protein - metabolism</subject><subject>Signal Transduction</subject><subject>Transcription Factors - metabolism</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkFtLAzEQhYMotlZf_AGyjyKsTi5tmhdBijco-qLPIclO28hearJb6L83urXo0zCcjzNnDiHnFK4pE-ymwM01nUgp2AEZUiFlrihTh2QIagw5VYoOyEmMHwDAE3ZMBhwE5WOmhmT-gl1ollhj9DHzddauMItosi64VVqxsmHbZD-ab71psci62n92WG57PCBmRVMZX8dTcrQwZcSz3RyR94f7t9lTPn99fJ7dzXMnhGhzCwawkLawUyenKQZa4QwzqJSTxlBAcNawJEnBwVo5QWnGxVQh0LHiBR-R29533dkKC4d1G0yp18FXJmx1Y7z-r9R-pZfNRk-YAE55MrjcGYQmvRJbXfnosCxNjU0XNaOcMQ4wmSb0qkddaGIMuNifoaC_69epft3Xn-CLv8H26G_f_AtU4IKB</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>McClay, David R</creator><creator>Miranda, Esther</creator><creator>Feinberg, Stacy L</creator><general>The Company of Biologists Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1985-157X</orcidid><orcidid>https://orcid.org/0000-0001-8824-2183</orcidid><orcidid>https://orcid.org/0000-0001-5834-3151</orcidid></search><sort><creationdate>20181101</creationdate><title>Neurogenesis in the sea urchin embryo is initiated uniquely in three domains</title><author>McClay, David R ; Miranda, Esther ; Feinberg, Stacy L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-b0a0ed7bdb8c78529eb4ca2ae99c7aa10e0cba27857430bb76e7a5d89e01593d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Body Patterning - genetics</topic><topic>Bone Morphogenetic Proteins - metabolism</topic><topic>Cell Lineage - genetics</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Regulatory Networks</topic><topic>Lytechinus - embryology</topic><topic>Lytechinus - genetics</topic><topic>Lytechinus - metabolism</topic><topic>Models, Biological</topic><topic>Neurogenesis - genetics</topic><topic>Nodal Protein - metabolism</topic><topic>Signal Transduction</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McClay, David R</creatorcontrib><creatorcontrib>Miranda, Esther</creatorcontrib><creatorcontrib>Feinberg, Stacy L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McClay, David R</au><au>Miranda, Esther</au><au>Feinberg, Stacy L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurogenesis in the sea urchin embryo is initiated uniquely in three domains</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>145</volume><issue>21</issue><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>30413529</pmid><doi>10.1242/dev.167742</doi><orcidid>https://orcid.org/0000-0003-1985-157X</orcidid><orcidid>https://orcid.org/0000-0001-8824-2183</orcidid><orcidid>https://orcid.org/0000-0001-5834-3151</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-1991
ispartof Development (Cambridge), 2018-11, Vol.145 (21)
issn 0950-1991
1477-9129
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240313
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists
subjects Animals
Body Patterning - genetics
Bone Morphogenetic Proteins - metabolism
Cell Lineage - genetics
Embryo, Nonmammalian - metabolism
Fibroblast Growth Factors - metabolism
Gene Expression Regulation, Developmental
Gene Regulatory Networks
Lytechinus - embryology
Lytechinus - genetics
Lytechinus - metabolism
Models, Biological
Neurogenesis - genetics
Nodal Protein - metabolism
Signal Transduction
Transcription Factors - metabolism
title Neurogenesis in the sea urchin embryo is initiated uniquely in three domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurogenesis%20in%20the%20sea%20urchin%20embryo%20is%20initiated%20uniquely%20in%20three%20domains&rft.jtitle=Development%20(Cambridge)&rft.au=McClay,%20David%20R&rft.date=2018-11-01&rft.volume=145&rft.issue=21&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.167742&rft_dat=%3Cproquest_pubme%3E2132230068%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132230068&rft_id=info:pmid/30413529&rfr_iscdi=true