Neurogenesis in the sea urchin embryo is initiated uniquely in three domains
Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2018-11, Vol.145 (21) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Development (Cambridge) |
container_volume | 145 |
creator | McClay, David R Miranda, Esther Feinberg, Stacy L |
description | Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut. |
doi_str_mv | 10.1242/dev.167742 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132230068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-b0a0ed7bdb8c78529eb4ca2ae99c7aa10e0cba27857430bb76e7a5d89e01593d3</originalsourceid><addsrcrecordid>eNpVkFtLAzEQhYMotlZf_AGyjyKsTi5tmhdBijco-qLPIclO28hearJb6L83urXo0zCcjzNnDiHnFK4pE-ymwM01nUgp2AEZUiFlrihTh2QIagw5VYoOyEmMHwDAE3ZMBhwE5WOmhmT-gl1ollhj9DHzddauMItosi64VVqxsmHbZD-ab71psci62n92WG57PCBmRVMZX8dTcrQwZcSz3RyR94f7t9lTPn99fJ7dzXMnhGhzCwawkLawUyenKQZa4QwzqJSTxlBAcNawJEnBwVo5QWnGxVQh0LHiBR-R29533dkKC4d1G0yp18FXJmx1Y7z-r9R-pZfNRk-YAE55MrjcGYQmvRJbXfnosCxNjU0XNaOcMQ4wmSb0qkddaGIMuNifoaC_69epft3Xn-CLv8H26G_f_AtU4IKB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132230068</pqid></control><display><type>article</type><title>Neurogenesis in the sea urchin embryo is initiated uniquely in three domains</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>McClay, David R ; Miranda, Esther ; Feinberg, Stacy L</creator><creatorcontrib>McClay, David R ; Miranda, Esther ; Feinberg, Stacy L</creatorcontrib><description>Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.167742</identifier><identifier>PMID: 30413529</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Animals ; Body Patterning - genetics ; Bone Morphogenetic Proteins - metabolism ; Cell Lineage - genetics ; Embryo, Nonmammalian - metabolism ; Fibroblast Growth Factors - metabolism ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Lytechinus - embryology ; Lytechinus - genetics ; Lytechinus - metabolism ; Models, Biological ; Neurogenesis - genetics ; Nodal Protein - metabolism ; Signal Transduction ; Transcription Factors - metabolism</subject><ispartof>Development (Cambridge), 2018-11, Vol.145 (21)</ispartof><rights>2018. Published by The Company of Biologists Ltd.</rights><rights>2018. Published by The Company of Biologists Ltd 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-b0a0ed7bdb8c78529eb4ca2ae99c7aa10e0cba27857430bb76e7a5d89e01593d3</citedby><cites>FETCH-LOGICAL-c444t-b0a0ed7bdb8c78529eb4ca2ae99c7aa10e0cba27857430bb76e7a5d89e01593d3</cites><orcidid>0000-0003-1985-157X ; 0000-0001-8824-2183 ; 0000-0001-5834-3151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3676,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30413529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McClay, David R</creatorcontrib><creatorcontrib>Miranda, Esther</creatorcontrib><creatorcontrib>Feinberg, Stacy L</creatorcontrib><title>Neurogenesis in the sea urchin embryo is initiated uniquely in three domains</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.</description><subject>Animals</subject><subject>Body Patterning - genetics</subject><subject>Bone Morphogenetic Proteins - metabolism</subject><subject>Cell Lineage - genetics</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Regulatory Networks</subject><subject>Lytechinus - embryology</subject><subject>Lytechinus - genetics</subject><subject>Lytechinus - metabolism</subject><subject>Models, Biological</subject><subject>Neurogenesis - genetics</subject><subject>Nodal Protein - metabolism</subject><subject>Signal Transduction</subject><subject>Transcription Factors - metabolism</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkFtLAzEQhYMotlZf_AGyjyKsTi5tmhdBijco-qLPIclO28hearJb6L83urXo0zCcjzNnDiHnFK4pE-ymwM01nUgp2AEZUiFlrihTh2QIagw5VYoOyEmMHwDAE3ZMBhwE5WOmhmT-gl1ollhj9DHzddauMItosi64VVqxsmHbZD-ab71psci62n92WG57PCBmRVMZX8dTcrQwZcSz3RyR94f7t9lTPn99fJ7dzXMnhGhzCwawkLawUyenKQZa4QwzqJSTxlBAcNawJEnBwVo5QWnGxVQh0LHiBR-R29533dkKC4d1G0yp18FXJmx1Y7z-r9R-pZfNRk-YAE55MrjcGYQmvRJbXfnosCxNjU0XNaOcMQ4wmSb0qkddaGIMuNifoaC_69epft3Xn-CLv8H26G_f_AtU4IKB</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>McClay, David R</creator><creator>Miranda, Esther</creator><creator>Feinberg, Stacy L</creator><general>The Company of Biologists Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1985-157X</orcidid><orcidid>https://orcid.org/0000-0001-8824-2183</orcidid><orcidid>https://orcid.org/0000-0001-5834-3151</orcidid></search><sort><creationdate>20181101</creationdate><title>Neurogenesis in the sea urchin embryo is initiated uniquely in three domains</title><author>McClay, David R ; Miranda, Esther ; Feinberg, Stacy L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-b0a0ed7bdb8c78529eb4ca2ae99c7aa10e0cba27857430bb76e7a5d89e01593d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Body Patterning - genetics</topic><topic>Bone Morphogenetic Proteins - metabolism</topic><topic>Cell Lineage - genetics</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Regulatory Networks</topic><topic>Lytechinus - embryology</topic><topic>Lytechinus - genetics</topic><topic>Lytechinus - metabolism</topic><topic>Models, Biological</topic><topic>Neurogenesis - genetics</topic><topic>Nodal Protein - metabolism</topic><topic>Signal Transduction</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McClay, David R</creatorcontrib><creatorcontrib>Miranda, Esther</creatorcontrib><creatorcontrib>Feinberg, Stacy L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McClay, David R</au><au>Miranda, Esther</au><au>Feinberg, Stacy L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurogenesis in the sea urchin embryo is initiated uniquely in three domains</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>145</volume><issue>21</issue><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>30413529</pmid><doi>10.1242/dev.167742</doi><orcidid>https://orcid.org/0000-0003-1985-157X</orcidid><orcidid>https://orcid.org/0000-0001-8824-2183</orcidid><orcidid>https://orcid.org/0000-0001-5834-3151</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-1991 |
ispartof | Development (Cambridge), 2018-11, Vol.145 (21) |
issn | 0950-1991 1477-9129 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240313 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists |
subjects | Animals Body Patterning - genetics Bone Morphogenetic Proteins - metabolism Cell Lineage - genetics Embryo, Nonmammalian - metabolism Fibroblast Growth Factors - metabolism Gene Expression Regulation, Developmental Gene Regulatory Networks Lytechinus - embryology Lytechinus - genetics Lytechinus - metabolism Models, Biological Neurogenesis - genetics Nodal Protein - metabolism Signal Transduction Transcription Factors - metabolism |
title | Neurogenesis in the sea urchin embryo is initiated uniquely in three domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurogenesis%20in%20the%20sea%20urchin%20embryo%20is%20initiated%20uniquely%20in%20three%20domains&rft.jtitle=Development%20(Cambridge)&rft.au=McClay,%20David%20R&rft.date=2018-11-01&rft.volume=145&rft.issue=21&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.167742&rft_dat=%3Cproquest_pubme%3E2132230068%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132230068&rft_id=info:pmid/30413529&rfr_iscdi=true |