Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury

Mechanical injury to the brain triggers multiple biochemical events whose specific contributions to the pathogenesis define clinical manifestations and the overall outcome. Among many factors, mitochondrial injury has recently attracted much attention due to the importance of the organelle for bioen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JCI insight 2018-11, Vol.3 (21)
Hauptverfasser: Chao, Honglu, Anthonymuthu, Tamil S, Kenny, Elizabeth M, Amoscato, Andrew A, Cole, Laura K, Hatch, Grant M, Ji, Jing, Kagan, Valerian E, Bayır, Hülya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title JCI insight
container_volume 3
creator Chao, Honglu
Anthonymuthu, Tamil S
Kenny, Elizabeth M
Amoscato, Andrew A
Cole, Laura K
Hatch, Grant M
Ji, Jing
Kagan, Valerian E
Bayır, Hülya
description Mechanical injury to the brain triggers multiple biochemical events whose specific contributions to the pathogenesis define clinical manifestations and the overall outcome. Among many factors, mitochondrial injury has recently attracted much attention due to the importance of the organelle for bioenergetics as well as intra- and extracellular signaling and cell death. Assuming the essentiality of a mitochondria-unique phospholipid, cardiolipin (CL), for the structural and functional organization of mitochondria, here we applied global (phospho) lipidomics and redox lipidomics to reveal and identify CL modifications during controlled cortical impact (CCI). We revealed 2 major pathways activated in the CCI-injured brain as time-specific responses: early accumulation of oxidized CL (CLox) products was followed by hydrolytic reactions yielding monolyso-CLs (mCLs) and free fatty acids. To quantitatively assess possible specific roles of peroxidation and hydrolysis of mitochondrial CL, we performed comparative studies of CL modifications using an animal model of Barth syndrome where deficiency of CL reacylation (Tafazzin [Taz] deficiency) was associated exclusively with the accumulation of mCLs (but not CLox). By comparing the in vitro and in vivo results with genetic manipulation of major CL-, CLox-, and mCL-metabolizing enzymes, calcium-independent phospholipase A2γ and Taz, we concluded that the 2 processes - CL oxidation and CL hydrolysis - act as mutually synergistically enhancing components of the pathogenic mechanism of mitochondrial injury in traumatic brain injury. This emphasizes the need for combined therapeutic approaches preventing the formation of both CLox and mCL.
doi_str_mv 10.1172/jci.insight.97677
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6238757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30385716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-8bf7ce22d7f9a39969a6849873de7a1a9aa6067bab53bc2e1e71fe1f91a982143</originalsourceid><addsrcrecordid>eNpVkV1LwzAUhoMobsz9AG-kf2Bb0rRNcyPI_ISBN3odTtO0zWiTknRi_72Zm2Ne5ZCX5z0fL0K3BC8JYfFqK_VSG6_rZlhyljF2gaYxZXxBGc4vz-oJmnu_xRgTlsQ4za_RhGKap4xkUzQ8aq_MAKZutakj-61LGLQ1q2YsnW1Hr33kFMj9n49sFRUOtIk6PVjZWFM6DW0kwZXatroP80RB7WFobK2M2tOBGRzsumArg7jdufEGXVXQejU_vjP0-fz0sX5dbN5f3tYPm4VMsnRY5EXFpIrjklUcKOcZhyxPeM5oqRgQ4AAZzlgBRUoLGSuiGKkUqXiQ8pgkdIbuD779ruhUKcOiDlrRO92BG4UFLf4rRjeitl8ii2nOUhYMyMFAOuu9U9WJJVjsUxAhBXFMQfymEJi786Yn4u_m9AddJ4v_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Chao, Honglu ; Anthonymuthu, Tamil S ; Kenny, Elizabeth M ; Amoscato, Andrew A ; Cole, Laura K ; Hatch, Grant M ; Ji, Jing ; Kagan, Valerian E ; Bayır, Hülya</creator><creatorcontrib>Chao, Honglu ; Anthonymuthu, Tamil S ; Kenny, Elizabeth M ; Amoscato, Andrew A ; Cole, Laura K ; Hatch, Grant M ; Ji, Jing ; Kagan, Valerian E ; Bayır, Hülya</creatorcontrib><description>Mechanical injury to the brain triggers multiple biochemical events whose specific contributions to the pathogenesis define clinical manifestations and the overall outcome. Among many factors, mitochondrial injury has recently attracted much attention due to the importance of the organelle for bioenergetics as well as intra- and extracellular signaling and cell death. Assuming the essentiality of a mitochondria-unique phospholipid, cardiolipin (CL), for the structural and functional organization of mitochondria, here we applied global (phospho) lipidomics and redox lipidomics to reveal and identify CL modifications during controlled cortical impact (CCI). We revealed 2 major pathways activated in the CCI-injured brain as time-specific responses: early accumulation of oxidized CL (CLox) products was followed by hydrolytic reactions yielding monolyso-CLs (mCLs) and free fatty acids. To quantitatively assess possible specific roles of peroxidation and hydrolysis of mitochondrial CL, we performed comparative studies of CL modifications using an animal model of Barth syndrome where deficiency of CL reacylation (Tafazzin [Taz] deficiency) was associated exclusively with the accumulation of mCLs (but not CLox). By comparing the in vitro and in vivo results with genetic manipulation of major CL-, CLox-, and mCL-metabolizing enzymes, calcium-independent phospholipase A2γ and Taz, we concluded that the 2 processes - CL oxidation and CL hydrolysis - act as mutually synergistically enhancing components of the pathogenic mechanism of mitochondrial injury in traumatic brain injury. This emphasizes the need for combined therapeutic approaches preventing the formation of both CLox and mCL.</description><identifier>ISSN: 2379-3708</identifier><identifier>EISSN: 2379-3708</identifier><identifier>DOI: 10.1172/jci.insight.97677</identifier><identifier>PMID: 30385716</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Barth Syndrome - metabolism ; Barth Syndrome - veterinary ; Brain - metabolism ; Brain - pathology ; Brain Injuries - metabolism ; Brain Injuries - pathology ; Cardiolipins - metabolism ; Cell Death - physiology ; Energy Metabolism ; Fatty Acids, Nonesterified - metabolism ; Female ; Humans ; Hydrolysis ; Male ; Mice ; Mitochondria - metabolism ; Mitochondria - pathology ; Models, Animal ; Oxidation-Reduction ; Rats ; Rats, Sprague-Dawley ; Signal Transduction ; Transcription Factors - metabolism</subject><ispartof>JCI insight, 2018-11, Vol.3 (21)</ispartof><rights>Copyright © 2018, American Society for Clinical Investigation 2018 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-8bf7ce22d7f9a39969a6849873de7a1a9aa6067bab53bc2e1e71fe1f91a982143</citedby><cites>FETCH-LOGICAL-c465t-8bf7ce22d7f9a39969a6849873de7a1a9aa6067bab53bc2e1e71fe1f91a982143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238757/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238757/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30385716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chao, Honglu</creatorcontrib><creatorcontrib>Anthonymuthu, Tamil S</creatorcontrib><creatorcontrib>Kenny, Elizabeth M</creatorcontrib><creatorcontrib>Amoscato, Andrew A</creatorcontrib><creatorcontrib>Cole, Laura K</creatorcontrib><creatorcontrib>Hatch, Grant M</creatorcontrib><creatorcontrib>Ji, Jing</creatorcontrib><creatorcontrib>Kagan, Valerian E</creatorcontrib><creatorcontrib>Bayır, Hülya</creatorcontrib><title>Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury</title><title>JCI insight</title><addtitle>JCI Insight</addtitle><description>Mechanical injury to the brain triggers multiple biochemical events whose specific contributions to the pathogenesis define clinical manifestations and the overall outcome. Among many factors, mitochondrial injury has recently attracted much attention due to the importance of the organelle for bioenergetics as well as intra- and extracellular signaling and cell death. Assuming the essentiality of a mitochondria-unique phospholipid, cardiolipin (CL), for the structural and functional organization of mitochondria, here we applied global (phospho) lipidomics and redox lipidomics to reveal and identify CL modifications during controlled cortical impact (CCI). We revealed 2 major pathways activated in the CCI-injured brain as time-specific responses: early accumulation of oxidized CL (CLox) products was followed by hydrolytic reactions yielding monolyso-CLs (mCLs) and free fatty acids. To quantitatively assess possible specific roles of peroxidation and hydrolysis of mitochondrial CL, we performed comparative studies of CL modifications using an animal model of Barth syndrome where deficiency of CL reacylation (Tafazzin [Taz] deficiency) was associated exclusively with the accumulation of mCLs (but not CLox). By comparing the in vitro and in vivo results with genetic manipulation of major CL-, CLox-, and mCL-metabolizing enzymes, calcium-independent phospholipase A2γ and Taz, we concluded that the 2 processes - CL oxidation and CL hydrolysis - act as mutually synergistically enhancing components of the pathogenic mechanism of mitochondrial injury in traumatic brain injury. This emphasizes the need for combined therapeutic approaches preventing the formation of both CLox and mCL.</description><subject>Animals</subject><subject>Barth Syndrome - metabolism</subject><subject>Barth Syndrome - veterinary</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Brain Injuries - metabolism</subject><subject>Brain Injuries - pathology</subject><subject>Cardiolipins - metabolism</subject><subject>Cell Death - physiology</subject><subject>Energy Metabolism</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Male</subject><subject>Mice</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Models, Animal</subject><subject>Oxidation-Reduction</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal Transduction</subject><subject>Transcription Factors - metabolism</subject><issn>2379-3708</issn><issn>2379-3708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkV1LwzAUhoMobsz9AG-kf2Bb0rRNcyPI_ISBN3odTtO0zWiTknRi_72Zm2Ne5ZCX5z0fL0K3BC8JYfFqK_VSG6_rZlhyljF2gaYxZXxBGc4vz-oJmnu_xRgTlsQ4za_RhGKap4xkUzQ8aq_MAKZutakj-61LGLQ1q2YsnW1Hr33kFMj9n49sFRUOtIk6PVjZWFM6DW0kwZXatroP80RB7WFobK2M2tOBGRzsumArg7jdufEGXVXQejU_vjP0-fz0sX5dbN5f3tYPm4VMsnRY5EXFpIrjklUcKOcZhyxPeM5oqRgQ4AAZzlgBRUoLGSuiGKkUqXiQ8pgkdIbuD779ruhUKcOiDlrRO92BG4UFLf4rRjeitl8ii2nOUhYMyMFAOuu9U9WJJVjsUxAhBXFMQfymEJi786Yn4u_m9AddJ4v_</recordid><startdate>20181102</startdate><enddate>20181102</enddate><creator>Chao, Honglu</creator><creator>Anthonymuthu, Tamil S</creator><creator>Kenny, Elizabeth M</creator><creator>Amoscato, Andrew A</creator><creator>Cole, Laura K</creator><creator>Hatch, Grant M</creator><creator>Ji, Jing</creator><creator>Kagan, Valerian E</creator><creator>Bayır, Hülya</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20181102</creationdate><title>Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury</title><author>Chao, Honglu ; Anthonymuthu, Tamil S ; Kenny, Elizabeth M ; Amoscato, Andrew A ; Cole, Laura K ; Hatch, Grant M ; Ji, Jing ; Kagan, Valerian E ; Bayır, Hülya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-8bf7ce22d7f9a39969a6849873de7a1a9aa6067bab53bc2e1e71fe1f91a982143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Barth Syndrome - metabolism</topic><topic>Barth Syndrome - veterinary</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Brain Injuries - metabolism</topic><topic>Brain Injuries - pathology</topic><topic>Cardiolipins - metabolism</topic><topic>Cell Death - physiology</topic><topic>Energy Metabolism</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Male</topic><topic>Mice</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Models, Animal</topic><topic>Oxidation-Reduction</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal Transduction</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chao, Honglu</creatorcontrib><creatorcontrib>Anthonymuthu, Tamil S</creatorcontrib><creatorcontrib>Kenny, Elizabeth M</creatorcontrib><creatorcontrib>Amoscato, Andrew A</creatorcontrib><creatorcontrib>Cole, Laura K</creatorcontrib><creatorcontrib>Hatch, Grant M</creatorcontrib><creatorcontrib>Ji, Jing</creatorcontrib><creatorcontrib>Kagan, Valerian E</creatorcontrib><creatorcontrib>Bayır, Hülya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JCI insight</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chao, Honglu</au><au>Anthonymuthu, Tamil S</au><au>Kenny, Elizabeth M</au><au>Amoscato, Andrew A</au><au>Cole, Laura K</au><au>Hatch, Grant M</au><au>Ji, Jing</au><au>Kagan, Valerian E</au><au>Bayır, Hülya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury</atitle><jtitle>JCI insight</jtitle><addtitle>JCI Insight</addtitle><date>2018-11-02</date><risdate>2018</risdate><volume>3</volume><issue>21</issue><issn>2379-3708</issn><eissn>2379-3708</eissn><abstract>Mechanical injury to the brain triggers multiple biochemical events whose specific contributions to the pathogenesis define clinical manifestations and the overall outcome. Among many factors, mitochondrial injury has recently attracted much attention due to the importance of the organelle for bioenergetics as well as intra- and extracellular signaling and cell death. Assuming the essentiality of a mitochondria-unique phospholipid, cardiolipin (CL), for the structural and functional organization of mitochondria, here we applied global (phospho) lipidomics and redox lipidomics to reveal and identify CL modifications during controlled cortical impact (CCI). We revealed 2 major pathways activated in the CCI-injured brain as time-specific responses: early accumulation of oxidized CL (CLox) products was followed by hydrolytic reactions yielding monolyso-CLs (mCLs) and free fatty acids. To quantitatively assess possible specific roles of peroxidation and hydrolysis of mitochondrial CL, we performed comparative studies of CL modifications using an animal model of Barth syndrome where deficiency of CL reacylation (Tafazzin [Taz] deficiency) was associated exclusively with the accumulation of mCLs (but not CLox). By comparing the in vitro and in vivo results with genetic manipulation of major CL-, CLox-, and mCL-metabolizing enzymes, calcium-independent phospholipase A2γ and Taz, we concluded that the 2 processes - CL oxidation and CL hydrolysis - act as mutually synergistically enhancing components of the pathogenic mechanism of mitochondrial injury in traumatic brain injury. This emphasizes the need for combined therapeutic approaches preventing the formation of both CLox and mCL.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>30385716</pmid><doi>10.1172/jci.insight.97677</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-3708
ispartof JCI insight, 2018-11, Vol.3 (21)
issn 2379-3708
2379-3708
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6238757
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Barth Syndrome - metabolism
Barth Syndrome - veterinary
Brain - metabolism
Brain - pathology
Brain Injuries - metabolism
Brain Injuries - pathology
Cardiolipins - metabolism
Cell Death - physiology
Energy Metabolism
Fatty Acids, Nonesterified - metabolism
Female
Humans
Hydrolysis
Male
Mice
Mitochondria - metabolism
Mitochondria - pathology
Models, Animal
Oxidation-Reduction
Rats
Rats, Sprague-Dawley
Signal Transduction
Transcription Factors - metabolism
title Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disentangling%20oxidation/hydrolysis%20reactions%20of%20brain%20mitochondrial%20cardiolipins%20in%20pathogenesis%20of%20traumatic%20injury&rft.jtitle=JCI%20insight&rft.au=Chao,%20Honglu&rft.date=2018-11-02&rft.volume=3&rft.issue=21&rft.issn=2379-3708&rft.eissn=2379-3708&rft_id=info:doi/10.1172/jci.insight.97677&rft_dat=%3Cpubmed_cross%3E30385716%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30385716&rfr_iscdi=true