Honey authentication using rheological and physicochemical properties

The aim of this study was to evaluate the influence of honey botanical origins on rheological parameters. In order to achieve the correlation, fifty-one honey samples, of different botanical origins (acacia, polyfloral, sunflower, honeydew, and tilia), were investigated. The honey samples were analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food science and technology 2018-12, Vol.55 (12), p.4711-4718
Hauptverfasser: Oroian, Mircea, Ropciuc, Sorina, Paduret, Sergiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4718
container_issue 12
container_start_page 4711
container_title Journal of food science and technology
container_volume 55
creator Oroian, Mircea
Ropciuc, Sorina
Paduret, Sergiu
description The aim of this study was to evaluate the influence of honey botanical origins on rheological parameters. In order to achieve the correlation, fifty-one honey samples, of different botanical origins (acacia, polyfloral, sunflower, honeydew, and tilia), were investigated. The honey samples were analysed from physicochemical (moisture content, fructose, glucose and sucrose content) and rheological point of view (dynamic viscosity—loss modulus G″ , elastic modulus G′ , complex viscosity η*, shear storage compliance— J′ and shear loss compliance J″ ). The rheological properties were predicted using the Artificial Neural Networks based on moisture content, glucose, fructose and sucrose. The models which predict better the rheological parameters in function of fructose, glucose, sucrose and moisture content are: MLP-1 hidden layer is predicting the G ″ , η* and J″, respectively, MLP-2 hidden layers the J ′ , while MLP-3 hidden layers the G ′ , respectively. The physicochemical and rheological parameters were submitted to statistical analysis as follows: Principal component analysis (PCA), Linear discriminant analysis (LDA) and Artificial neural network (ANN) in order to evaluate the usefulness of the parameters studied for honey authentication. The LDA was found the suitable method for honey botanical authentication, reaching a correct cross validation of 94.12% of the samples.
doi_str_mv 10.1007/s13197-018-3415-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6233437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138646716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-d6bdd370f23fbd99b8f592b11628f4a09d1ab6788f804faaa1e3c4fc0790d8913</originalsourceid><addsrcrecordid>eNp1kU9rFjEQxoMottR-AC-y4MXL1pkku0kugpRqCwUveg7ZbPJuyr7JmuwK77dv6lvrH3AuGWZ-82SGh5DXCBcIIN4XZKhECyhbxrFr-TNyCkp0reRAn9ccKG0Ru-6EnJdyBzUYFZLCS3LCgEuqenFKrq5TdIfGbOvk4hqsWUOKzVZC3DV5cmlOu1qcGxPHZpkOJdhkJ7f_WVtyWlxegyuvyAtv5uLOH98z8u3T1dfL6_b2y-eby4-3reUC1nbsh3FkAjxlfhiVGqTvFB0Qeyo9N6BGNEMvpPQSuDfGoGOWewtCwSgVsjPy4ai7bMPejbaunM2slxz2Jh90MkH_3Ylh0rv0Q_eUMc5EFXj3KJDT982VVe9DsW6eTXRpK5oikz3vBfYVffsPepe2HOt5lQLGOqE6qBQeKZtTKdn5p2UQ9INP-uiTrj7pB580rzNv_rziaeKXKxWgR6DUVty5_Pvr_6veAypUnuI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103357950</pqid></control><display><type>article</type><title>Honey authentication using rheological and physicochemical properties</title><source>SpringerNature Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Oroian, Mircea ; Ropciuc, Sorina ; Paduret, Sergiu</creator><creatorcontrib>Oroian, Mircea ; Ropciuc, Sorina ; Paduret, Sergiu</creatorcontrib><description>The aim of this study was to evaluate the influence of honey botanical origins on rheological parameters. In order to achieve the correlation, fifty-one honey samples, of different botanical origins (acacia, polyfloral, sunflower, honeydew, and tilia), were investigated. The honey samples were analysed from physicochemical (moisture content, fructose, glucose and sucrose content) and rheological point of view (dynamic viscosity—loss modulus G″ , elastic modulus G′ , complex viscosity η*, shear storage compliance— J′ and shear loss compliance J″ ). The rheological properties were predicted using the Artificial Neural Networks based on moisture content, glucose, fructose and sucrose. The models which predict better the rheological parameters in function of fructose, glucose, sucrose and moisture content are: MLP-1 hidden layer is predicting the G ″ , η* and J″, respectively, MLP-2 hidden layers the J ′ , while MLP-3 hidden layers the G ′ , respectively. The physicochemical and rheological parameters were submitted to statistical analysis as follows: Principal component analysis (PCA), Linear discriminant analysis (LDA) and Artificial neural network (ANN) in order to evaluate the usefulness of the parameters studied for honey authentication. The LDA was found the suitable method for honey botanical authentication, reaching a correct cross validation of 94.12% of the samples.</description><identifier>ISSN: 0022-1155</identifier><identifier>EISSN: 0975-8402</identifier><identifier>DOI: 10.1007/s13197-018-3415-4</identifier><identifier>PMID: 30482967</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Artificial neural networks ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Discriminant analysis ; Food Science ; Fructose ; Glucose ; Honey ; Honeydew ; Loss modulus ; Mechanical properties ; Modulus of elasticity ; Moisture content ; Neural networks ; Nutrition ; Order parameters ; Origins ; Physicochemical properties ; Principal components analysis ; Review ; Review Article ; Rheological properties ; Rheology ; Statistical analysis ; Statistical methods ; Studies ; Sucrose ; Sugar ; Viscosity ; Water content</subject><ispartof>Journal of food science and technology, 2018-12, Vol.55 (12), p.4711-4718</ispartof><rights>Association of Food Scientists &amp; Technologists (India) 2018</rights><rights>Journal of Food Science and Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-d6bdd370f23fbd99b8f592b11628f4a09d1ab6788f804faaa1e3c4fc0790d8913</citedby><cites>FETCH-LOGICAL-c470t-d6bdd370f23fbd99b8f592b11628f4a09d1ab6788f804faaa1e3c4fc0790d8913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233437/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233437/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30482967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oroian, Mircea</creatorcontrib><creatorcontrib>Ropciuc, Sorina</creatorcontrib><creatorcontrib>Paduret, Sergiu</creatorcontrib><title>Honey authentication using rheological and physicochemical properties</title><title>Journal of food science and technology</title><addtitle>J Food Sci Technol</addtitle><addtitle>J Food Sci Technol</addtitle><description>The aim of this study was to evaluate the influence of honey botanical origins on rheological parameters. In order to achieve the correlation, fifty-one honey samples, of different botanical origins (acacia, polyfloral, sunflower, honeydew, and tilia), were investigated. The honey samples were analysed from physicochemical (moisture content, fructose, glucose and sucrose content) and rheological point of view (dynamic viscosity—loss modulus G″ , elastic modulus G′ , complex viscosity η*, shear storage compliance— J′ and shear loss compliance J″ ). The rheological properties were predicted using the Artificial Neural Networks based on moisture content, glucose, fructose and sucrose. The models which predict better the rheological parameters in function of fructose, glucose, sucrose and moisture content are: MLP-1 hidden layer is predicting the G ″ , η* and J″, respectively, MLP-2 hidden layers the J ′ , while MLP-3 hidden layers the G ′ , respectively. The physicochemical and rheological parameters were submitted to statistical analysis as follows: Principal component analysis (PCA), Linear discriminant analysis (LDA) and Artificial neural network (ANN) in order to evaluate the usefulness of the parameters studied for honey authentication. The LDA was found the suitable method for honey botanical authentication, reaching a correct cross validation of 94.12% of the samples.</description><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Discriminant analysis</subject><subject>Food Science</subject><subject>Fructose</subject><subject>Glucose</subject><subject>Honey</subject><subject>Honeydew</subject><subject>Loss modulus</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Moisture content</subject><subject>Neural networks</subject><subject>Nutrition</subject><subject>Order parameters</subject><subject>Origins</subject><subject>Physicochemical properties</subject><subject>Principal components analysis</subject><subject>Review</subject><subject>Review Article</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Viscosity</subject><subject>Water content</subject><issn>0022-1155</issn><issn>0975-8402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU9rFjEQxoMottR-AC-y4MXL1pkku0kugpRqCwUveg7ZbPJuyr7JmuwK77dv6lvrH3AuGWZ-82SGh5DXCBcIIN4XZKhECyhbxrFr-TNyCkp0reRAn9ccKG0Ru-6EnJdyBzUYFZLCS3LCgEuqenFKrq5TdIfGbOvk4hqsWUOKzVZC3DV5cmlOu1qcGxPHZpkOJdhkJ7f_WVtyWlxegyuvyAtv5uLOH98z8u3T1dfL6_b2y-eby4-3reUC1nbsh3FkAjxlfhiVGqTvFB0Qeyo9N6BGNEMvpPQSuDfGoGOWewtCwSgVsjPy4ai7bMPejbaunM2slxz2Jh90MkH_3Ylh0rv0Q_eUMc5EFXj3KJDT982VVe9DsW6eTXRpK5oikz3vBfYVffsPepe2HOt5lQLGOqE6qBQeKZtTKdn5p2UQ9INP-uiTrj7pB580rzNv_rziaeKXKxWgR6DUVty5_Pvr_6veAypUnuI</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Oroian, Mircea</creator><creator>Ropciuc, Sorina</creator><creator>Paduret, Sergiu</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04S</scope><scope>04W</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7QR</scope><scope>7RQ</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0K</scope><scope>M7S</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181201</creationdate><title>Honey authentication using rheological and physicochemical properties</title><author>Oroian, Mircea ; Ropciuc, Sorina ; Paduret, Sergiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-d6bdd370f23fbd99b8f592b11628f4a09d1ab6788f804faaa1e3c4fc0790d8913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Discriminant analysis</topic><topic>Food Science</topic><topic>Fructose</topic><topic>Glucose</topic><topic>Honey</topic><topic>Honeydew</topic><topic>Loss modulus</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Moisture content</topic><topic>Neural networks</topic><topic>Nutrition</topic><topic>Order parameters</topic><topic>Origins</topic><topic>Physicochemical properties</topic><topic>Principal components analysis</topic><topic>Review</topic><topic>Review Article</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Viscosity</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oroian, Mircea</creatorcontrib><creatorcontrib>Ropciuc, Sorina</creatorcontrib><creatorcontrib>Paduret, Sergiu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Business</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Career &amp; Technical Education Database</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of food science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oroian, Mircea</au><au>Ropciuc, Sorina</au><au>Paduret, Sergiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Honey authentication using rheological and physicochemical properties</atitle><jtitle>Journal of food science and technology</jtitle><stitle>J Food Sci Technol</stitle><addtitle>J Food Sci Technol</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>55</volume><issue>12</issue><spage>4711</spage><epage>4718</epage><pages>4711-4718</pages><issn>0022-1155</issn><eissn>0975-8402</eissn><abstract>The aim of this study was to evaluate the influence of honey botanical origins on rheological parameters. In order to achieve the correlation, fifty-one honey samples, of different botanical origins (acacia, polyfloral, sunflower, honeydew, and tilia), were investigated. The honey samples were analysed from physicochemical (moisture content, fructose, glucose and sucrose content) and rheological point of view (dynamic viscosity—loss modulus G″ , elastic modulus G′ , complex viscosity η*, shear storage compliance— J′ and shear loss compliance J″ ). The rheological properties were predicted using the Artificial Neural Networks based on moisture content, glucose, fructose and sucrose. The models which predict better the rheological parameters in function of fructose, glucose, sucrose and moisture content are: MLP-1 hidden layer is predicting the G ″ , η* and J″, respectively, MLP-2 hidden layers the J ′ , while MLP-3 hidden layers the G ′ , respectively. The physicochemical and rheological parameters were submitted to statistical analysis as follows: Principal component analysis (PCA), Linear discriminant analysis (LDA) and Artificial neural network (ANN) in order to evaluate the usefulness of the parameters studied for honey authentication. The LDA was found the suitable method for honey botanical authentication, reaching a correct cross validation of 94.12% of the samples.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>30482967</pmid><doi>10.1007/s13197-018-3415-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1155
ispartof Journal of food science and technology, 2018-12, Vol.55 (12), p.4711-4718
issn 0022-1155
0975-8402
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6233437
source SpringerNature Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Artificial neural networks
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Discriminant analysis
Food Science
Fructose
Glucose
Honey
Honeydew
Loss modulus
Mechanical properties
Modulus of elasticity
Moisture content
Neural networks
Nutrition
Order parameters
Origins
Physicochemical properties
Principal components analysis
Review
Review Article
Rheological properties
Rheology
Statistical analysis
Statistical methods
Studies
Sucrose
Sugar
Viscosity
Water content
title Honey authentication using rheological and physicochemical properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Honey%20authentication%20using%20rheological%20and%20physicochemical%20properties&rft.jtitle=Journal%20of%20food%20science%20and%20technology&rft.au=Oroian,%20Mircea&rft.date=2018-12-01&rft.volume=55&rft.issue=12&rft.spage=4711&rft.epage=4718&rft.pages=4711-4718&rft.issn=0022-1155&rft.eissn=0975-8402&rft_id=info:doi/10.1007/s13197-018-3415-4&rft_dat=%3Cproquest_pubme%3E2138646716%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103357950&rft_id=info:pmid/30482967&rfr_iscdi=true