Empirical Dynamic Modelling Identifies different Responses of Aedes Polynesiensis Subpopulations to Natural Environmental Variables
To control mosquito populations for managing vector-borne diseases, a critical need is to identify and predict their response to causal environmental variables. However, most existing attempts rely on linear approaches based on correlation, which cannot apply in complex, nonlinear natural systems, b...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-11, Vol.8 (1), p.16768-10, Article 16768 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 16768 |
container_title | Scientific reports |
container_volume | 8 |
creator | Grziwotz, Florian Strauß, Jakob Friedrich Hsieh, Chih-hao Telschow, Arndt |
description | To control mosquito populations for managing vector-borne diseases, a critical need is to identify and predict their response to causal environmental variables. However, most existing attempts rely on linear approaches based on correlation, which cannot apply in complex, nonlinear natural systems, because correlation is neither a necessary nor sufficient condition for causation. Applying empirical dynamic modelling that acknowledges nonlinear dynamics on nine subpopulations of tiger mosquitos from three neighbouring reef islets of the Raiatea atoll, we identified temperature, precipitation, dew point, air pressure, and mean tide level as causal environmental variables. Interestingly, responses of subpopulations in close proximity (100–500 m) differed with respect to their causal environmental variables and the time delay of effect, highlighting complexity in mosquito-environment causality network. Moreover, we demonstrated how to explore the effects of changing environmental variables on number and strength of mosquito outbreaks, providing a new framework for pest control and disease vector ecology. |
doi_str_mv | 10.1038/s41598-018-34972-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6233190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132702551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ae481e16f1a2c08cc82d8798299d0e76e4f9e24db260f17f1badcb770d1e375b3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEolXpC7BAkdiwCfiW43iDVJUDVCoXcdtajj0-uErs1E5anXVfvFNOKYUF3njs-fzPjP-qekrJS0p496oI2qquIbRruFCSNZcPqn1GRNswztjDe_FedVjKGcHVMiWoelztcSJYy6Tcr67W4xRysGao32yjGYOtPyQHwxDipj5xEOfgA5TaBe8h47H-AmVKseBd8vUROAw-p2EboQSIJZT669JPaVoGMwfk6jnVH828ZKywjhchpziiDJ5-mBxMP0B5Uj3yZihweLsfVN_frr8dv29OP707OT46bayQYm4MiI4CXXlqmCWdtR1znVQdU8oRkCsQXgETrmcr4qn0tDfO9lISR4HLtucH1eud7rT0IziLbWBXesphNHmrkwn670wMP_UmXegV45wqggIvbgVyOl-gzHoMxeJnmQhpKZpRzgVnQnJEn_-DnqUlRxzvhmKSsLalSLEdZXMqJYO_a4YSfWOz3tms0Wb9y2Z9iY-e3R_j7slvUxHgO6BgKm4g_6n9H9lrVWW3ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132702551</pqid></control><display><type>article</type><title>Empirical Dynamic Modelling Identifies different Responses of Aedes Polynesiensis Subpopulations to Natural Environmental Variables</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Grziwotz, Florian ; Strauß, Jakob Friedrich ; Hsieh, Chih-hao ; Telschow, Arndt</creator><creatorcontrib>Grziwotz, Florian ; Strauß, Jakob Friedrich ; Hsieh, Chih-hao ; Telschow, Arndt</creatorcontrib><description>To control mosquito populations for managing vector-borne diseases, a critical need is to identify and predict their response to causal environmental variables. However, most existing attempts rely on linear approaches based on correlation, which cannot apply in complex, nonlinear natural systems, because correlation is neither a necessary nor sufficient condition for causation. Applying empirical dynamic modelling that acknowledges nonlinear dynamics on nine subpopulations of tiger mosquitos from three neighbouring reef islets of the Raiatea atoll, we identified temperature, precipitation, dew point, air pressure, and mean tide level as causal environmental variables. Interestingly, responses of subpopulations in close proximity (100–500 m) differed with respect to their causal environmental variables and the time delay of effect, highlighting complexity in mosquito-environment causality network. Moreover, we demonstrated how to explore the effects of changing environmental variables on number and strength of mosquito outbreaks, providing a new framework for pest control and disease vector ecology.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-34972-w</identifier><identifier>PMID: 30425277</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/2445 ; 631/158/2463 ; 639/705/1041 ; Air temperature ; Humanities and Social Sciences ; Mosquitoes ; multidisciplinary ; Nonlinear systems ; Outbreaks ; Pest control ; Science ; Science (multidisciplinary) ; Subpopulations ; Vector-borne diseases</subject><ispartof>Scientific reports, 2018-11, Vol.8 (1), p.16768-10, Article 16768</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ae481e16f1a2c08cc82d8798299d0e76e4f9e24db260f17f1badcb770d1e375b3</citedby><cites>FETCH-LOGICAL-c474t-ae481e16f1a2c08cc82d8798299d0e76e4f9e24db260f17f1badcb770d1e375b3</cites><orcidid>0000-0001-5935-7272 ; 0000-0001-9647-4128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233190/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233190/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41098,42167,51553,53768,53770</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30425277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grziwotz, Florian</creatorcontrib><creatorcontrib>Strauß, Jakob Friedrich</creatorcontrib><creatorcontrib>Hsieh, Chih-hao</creatorcontrib><creatorcontrib>Telschow, Arndt</creatorcontrib><title>Empirical Dynamic Modelling Identifies different Responses of Aedes Polynesiensis Subpopulations to Natural Environmental Variables</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>To control mosquito populations for managing vector-borne diseases, a critical need is to identify and predict their response to causal environmental variables. However, most existing attempts rely on linear approaches based on correlation, which cannot apply in complex, nonlinear natural systems, because correlation is neither a necessary nor sufficient condition for causation. Applying empirical dynamic modelling that acknowledges nonlinear dynamics on nine subpopulations of tiger mosquitos from three neighbouring reef islets of the Raiatea atoll, we identified temperature, precipitation, dew point, air pressure, and mean tide level as causal environmental variables. Interestingly, responses of subpopulations in close proximity (100–500 m) differed with respect to their causal environmental variables and the time delay of effect, highlighting complexity in mosquito-environment causality network. Moreover, we demonstrated how to explore the effects of changing environmental variables on number and strength of mosquito outbreaks, providing a new framework for pest control and disease vector ecology.</description><subject>631/158/2445</subject><subject>631/158/2463</subject><subject>639/705/1041</subject><subject>Air temperature</subject><subject>Humanities and Social Sciences</subject><subject>Mosquitoes</subject><subject>multidisciplinary</subject><subject>Nonlinear systems</subject><subject>Outbreaks</subject><subject>Pest control</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Subpopulations</subject><subject>Vector-borne diseases</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctu1TAQhiMEolXpC7BAkdiwCfiW43iDVJUDVCoXcdtajj0-uErs1E5anXVfvFNOKYUF3njs-fzPjP-qekrJS0p496oI2qquIbRruFCSNZcPqn1GRNswztjDe_FedVjKGcHVMiWoelztcSJYy6Tcr67W4xRysGao32yjGYOtPyQHwxDipj5xEOfgA5TaBe8h47H-AmVKseBd8vUROAw-p2EboQSIJZT669JPaVoGMwfk6jnVH828ZKywjhchpziiDJ5-mBxMP0B5Uj3yZihweLsfVN_frr8dv29OP707OT46bayQYm4MiI4CXXlqmCWdtR1znVQdU8oRkCsQXgETrmcr4qn0tDfO9lISR4HLtucH1eud7rT0IziLbWBXesphNHmrkwn670wMP_UmXegV45wqggIvbgVyOl-gzHoMxeJnmQhpKZpRzgVnQnJEn_-DnqUlRxzvhmKSsLalSLEdZXMqJYO_a4YSfWOz3tms0Wb9y2Z9iY-e3R_j7slvUxHgO6BgKm4g_6n9H9lrVWW3ag</recordid><startdate>20181113</startdate><enddate>20181113</enddate><creator>Grziwotz, Florian</creator><creator>Strauß, Jakob Friedrich</creator><creator>Hsieh, Chih-hao</creator><creator>Telschow, Arndt</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5935-7272</orcidid><orcidid>https://orcid.org/0000-0001-9647-4128</orcidid></search><sort><creationdate>20181113</creationdate><title>Empirical Dynamic Modelling Identifies different Responses of Aedes Polynesiensis Subpopulations to Natural Environmental Variables</title><author>Grziwotz, Florian ; Strauß, Jakob Friedrich ; Hsieh, Chih-hao ; Telschow, Arndt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ae481e16f1a2c08cc82d8798299d0e76e4f9e24db260f17f1badcb770d1e375b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/158/2445</topic><topic>631/158/2463</topic><topic>639/705/1041</topic><topic>Air temperature</topic><topic>Humanities and Social Sciences</topic><topic>Mosquitoes</topic><topic>multidisciplinary</topic><topic>Nonlinear systems</topic><topic>Outbreaks</topic><topic>Pest control</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Subpopulations</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grziwotz, Florian</creatorcontrib><creatorcontrib>Strauß, Jakob Friedrich</creatorcontrib><creatorcontrib>Hsieh, Chih-hao</creatorcontrib><creatorcontrib>Telschow, Arndt</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grziwotz, Florian</au><au>Strauß, Jakob Friedrich</au><au>Hsieh, Chih-hao</au><au>Telschow, Arndt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Dynamic Modelling Identifies different Responses of Aedes Polynesiensis Subpopulations to Natural Environmental Variables</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-11-13</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>16768</spage><epage>10</epage><pages>16768-10</pages><artnum>16768</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>To control mosquito populations for managing vector-borne diseases, a critical need is to identify and predict their response to causal environmental variables. However, most existing attempts rely on linear approaches based on correlation, which cannot apply in complex, nonlinear natural systems, because correlation is neither a necessary nor sufficient condition for causation. Applying empirical dynamic modelling that acknowledges nonlinear dynamics on nine subpopulations of tiger mosquitos from three neighbouring reef islets of the Raiatea atoll, we identified temperature, precipitation, dew point, air pressure, and mean tide level as causal environmental variables. Interestingly, responses of subpopulations in close proximity (100–500 m) differed with respect to their causal environmental variables and the time delay of effect, highlighting complexity in mosquito-environment causality network. Moreover, we demonstrated how to explore the effects of changing environmental variables on number and strength of mosquito outbreaks, providing a new framework for pest control and disease vector ecology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30425277</pmid><doi>10.1038/s41598-018-34972-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5935-7272</orcidid><orcidid>https://orcid.org/0000-0001-9647-4128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-11, Vol.8 (1), p.16768-10, Article 16768 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6233190 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/158/2445 631/158/2463 639/705/1041 Air temperature Humanities and Social Sciences Mosquitoes multidisciplinary Nonlinear systems Outbreaks Pest control Science Science (multidisciplinary) Subpopulations Vector-borne diseases |
title | Empirical Dynamic Modelling Identifies different Responses of Aedes Polynesiensis Subpopulations to Natural Environmental Variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Dynamic%20Modelling%20Identifies%20different%20Responses%20of%20Aedes%20Polynesiensis%20Subpopulations%20to%20Natural%20Environmental%20Variables&rft.jtitle=Scientific%20reports&rft.au=Grziwotz,%20Florian&rft.date=2018-11-13&rft.volume=8&rft.issue=1&rft.spage=16768&rft.epage=10&rft.pages=16768-10&rft.artnum=16768&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-34972-w&rft_dat=%3Cproquest_pubme%3E2132702551%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132702551&rft_id=info:pmid/30425277&rfr_iscdi=true |