Mechanisms underlying contrast-dependent orientation selectivity in mouse V1

Recent experiments have shown that mouse primary visual cortex (V1) is very different from that of cat or monkey, including response properties—one of which is that contrast invariance in the orientation selectivity (OS) of the neurons’ firing rates is replaced in mouse with contrast-dependent sharp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-11, Vol.115 (45), p.11619-11624
Hauptverfasser: Dai, Wei P., Zhou, Douglas, McLaughlin, David W., Cai, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11624
container_issue 45
container_start_page 11619
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Dai, Wei P.
Zhou, Douglas
McLaughlin, David W.
Cai, David
description Recent experiments have shown that mouse primary visual cortex (V1) is very different from that of cat or monkey, including response properties—one of which is that contrast invariance in the orientation selectivity (OS) of the neurons’ firing rates is replaced in mouse with contrast-dependent sharpening (broadening) of OS in excitatory (inhibitory) neurons. These differences indicate a different circuit design for mouse V1 than that of cat or monkey. Here we develop a large-scale computational model of an effective input layer of mouse V1. Constrained by experiment data, the model successfully reproduces experimentally observed response properties—for example, distributions of firing rates, orientation tuning widths, and response modulations of simple and complex neurons, including the contrast dependence of orientation tuning curves. Analysis of the model shows that strong feedback inhibition and strong orientation-preferential cortical excitation to the excitatory population are the predominant mechanisms underlying the contrast-sharpening of OS in excitatory neurons, while the contrast-broadening of OS in inhibitory neurons results from a strong but nonpreferential cortical excitation to these inhibitory neurons, with the resulting contrast-broadened inhibition producing a secondary enhancement on the contrast-sharpened OS of excitatory neurons. Finally, based on these mechanisms, we show that adjusting the detailed balances between the predominant mechanisms can lead to contrast invariance—providing insights for future studies on contrast dependence (invariance).
doi_str_mv 10.1073/pnas.1719044115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6233123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26563192</jstor_id><sourcerecordid>26563192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-7d793a92595ec4c75de94549d7e156e3e464109264076f309160a4d9c278468b3</originalsourceid><addsrcrecordid>eNpdkc9rFDEUx4Modrt69qQMePEy7cvk1-QilKJVWOmleg1p5m2bZSZZk0xh__tm2bpaD-FB3uc93ocvIe8onFFQ7HwbbD6jimrgnFLxgiwoaNpKruElWQB0qu15x0_Iac4bANCih9fkhAFjivewIKsf6O5t8HnKzRwGTOPOh7vGxVCSzaUdcIv1O5QmJl-LLT6GJuOIrvgHX3aND80U54zNL_qGvFrbMePbp7okP79-ubn81q6ur75fXqxaJ0CXVg1KM6s7oQU67pQYUHPB9aCQCokMueRVo5MclFyzKiTB8kG7TvVc9rdsST4f9m7n2wkHh_tjR7NNfrJpZ6L15nkn-HtzFx-M7Bij9S3Jp6cFKf6eMRcz-exwHG3A6mK6Cikqeikq-vE_dBPnFKpepRjtGRMgK3V-oFyKOSdcH4-hYPZJmX1S5m9SdeLDvw5H_k80FXh_ADa5xHTsd1JIRnXHHgEuKpjX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131833506</pqid></control><display><type>article</type><title>Mechanisms underlying contrast-dependent orientation selectivity in mouse V1</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dai, Wei P. ; Zhou, Douglas ; McLaughlin, David W. ; Cai, David</creator><creatorcontrib>Dai, Wei P. ; Zhou, Douglas ; McLaughlin, David W. ; Cai, David</creatorcontrib><description>Recent experiments have shown that mouse primary visual cortex (V1) is very different from that of cat or monkey, including response properties—one of which is that contrast invariance in the orientation selectivity (OS) of the neurons’ firing rates is replaced in mouse with contrast-dependent sharpening (broadening) of OS in excitatory (inhibitory) neurons. These differences indicate a different circuit design for mouse V1 than that of cat or monkey. Here we develop a large-scale computational model of an effective input layer of mouse V1. Constrained by experiment data, the model successfully reproduces experimentally observed response properties—for example, distributions of firing rates, orientation tuning widths, and response modulations of simple and complex neurons, including the contrast dependence of orientation tuning curves. Analysis of the model shows that strong feedback inhibition and strong orientation-preferential cortical excitation to the excitatory population are the predominant mechanisms underlying the contrast-sharpening of OS in excitatory neurons, while the contrast-broadening of OS in inhibitory neurons results from a strong but nonpreferential cortical excitation to these inhibitory neurons, with the resulting contrast-broadened inhibition producing a secondary enhancement on the contrast-sharpened OS of excitatory neurons. Finally, based on these mechanisms, we show that adjusting the detailed balances between the predominant mechanisms can lead to contrast invariance—providing insights for future studies on contrast dependence (invariance).</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1719044115</identifier><identifier>PMID: 30337480</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Circuit design ; Computational neuroscience ; Dependence ; Excitation ; Feedback inhibition ; Invariance ; Mouse devices ; Neurons ; Orientation ; Orientation behavior ; Rodents ; Selectivity ; Sharpening ; Tuning ; Visual cortex</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-11, Vol.115 (45), p.11619-11624</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Nov 6, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-7d793a92595ec4c75de94549d7e156e3e464109264076f309160a4d9c278468b3</citedby><cites>FETCH-LOGICAL-c509t-7d793a92595ec4c75de94549d7e156e3e464109264076f309160a4d9c278468b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26563192$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26563192$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30337480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Wei P.</creatorcontrib><creatorcontrib>Zhou, Douglas</creatorcontrib><creatorcontrib>McLaughlin, David W.</creatorcontrib><creatorcontrib>Cai, David</creatorcontrib><title>Mechanisms underlying contrast-dependent orientation selectivity in mouse V1</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recent experiments have shown that mouse primary visual cortex (V1) is very different from that of cat or monkey, including response properties—one of which is that contrast invariance in the orientation selectivity (OS) of the neurons’ firing rates is replaced in mouse with contrast-dependent sharpening (broadening) of OS in excitatory (inhibitory) neurons. These differences indicate a different circuit design for mouse V1 than that of cat or monkey. Here we develop a large-scale computational model of an effective input layer of mouse V1. Constrained by experiment data, the model successfully reproduces experimentally observed response properties—for example, distributions of firing rates, orientation tuning widths, and response modulations of simple and complex neurons, including the contrast dependence of orientation tuning curves. Analysis of the model shows that strong feedback inhibition and strong orientation-preferential cortical excitation to the excitatory population are the predominant mechanisms underlying the contrast-sharpening of OS in excitatory neurons, while the contrast-broadening of OS in inhibitory neurons results from a strong but nonpreferential cortical excitation to these inhibitory neurons, with the resulting contrast-broadened inhibition producing a secondary enhancement on the contrast-sharpened OS of excitatory neurons. Finally, based on these mechanisms, we show that adjusting the detailed balances between the predominant mechanisms can lead to contrast invariance—providing insights for future studies on contrast dependence (invariance).</description><subject>Biological Sciences</subject><subject>Circuit design</subject><subject>Computational neuroscience</subject><subject>Dependence</subject><subject>Excitation</subject><subject>Feedback inhibition</subject><subject>Invariance</subject><subject>Mouse devices</subject><subject>Neurons</subject><subject>Orientation</subject><subject>Orientation behavior</subject><subject>Rodents</subject><subject>Selectivity</subject><subject>Sharpening</subject><subject>Tuning</subject><subject>Visual cortex</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFDEUx4Modrt69qQMePEy7cvk1-QilKJVWOmleg1p5m2bZSZZk0xh__tm2bpaD-FB3uc93ocvIe8onFFQ7HwbbD6jimrgnFLxgiwoaNpKruElWQB0qu15x0_Iac4bANCih9fkhAFjivewIKsf6O5t8HnKzRwGTOPOh7vGxVCSzaUdcIv1O5QmJl-LLT6GJuOIrvgHX3aND80U54zNL_qGvFrbMePbp7okP79-ubn81q6ur75fXqxaJ0CXVg1KM6s7oQU67pQYUHPB9aCQCokMueRVo5MclFyzKiTB8kG7TvVc9rdsST4f9m7n2wkHh_tjR7NNfrJpZ6L15nkn-HtzFx-M7Bij9S3Jp6cFKf6eMRcz-exwHG3A6mK6Cikqeikq-vE_dBPnFKpepRjtGRMgK3V-oFyKOSdcH4-hYPZJmX1S5m9SdeLDvw5H_k80FXh_ADa5xHTsd1JIRnXHHgEuKpjX</recordid><startdate>20181106</startdate><enddate>20181106</enddate><creator>Dai, Wei P.</creator><creator>Zhou, Douglas</creator><creator>McLaughlin, David W.</creator><creator>Cai, David</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181106</creationdate><title>Mechanisms underlying contrast-dependent orientation selectivity in mouse V1</title><author>Dai, Wei P. ; Zhou, Douglas ; McLaughlin, David W. ; Cai, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-7d793a92595ec4c75de94549d7e156e3e464109264076f309160a4d9c278468b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological Sciences</topic><topic>Circuit design</topic><topic>Computational neuroscience</topic><topic>Dependence</topic><topic>Excitation</topic><topic>Feedback inhibition</topic><topic>Invariance</topic><topic>Mouse devices</topic><topic>Neurons</topic><topic>Orientation</topic><topic>Orientation behavior</topic><topic>Rodents</topic><topic>Selectivity</topic><topic>Sharpening</topic><topic>Tuning</topic><topic>Visual cortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Wei P.</creatorcontrib><creatorcontrib>Zhou, Douglas</creatorcontrib><creatorcontrib>McLaughlin, David W.</creatorcontrib><creatorcontrib>Cai, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Wei P.</au><au>Zhou, Douglas</au><au>McLaughlin, David W.</au><au>Cai, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms underlying contrast-dependent orientation selectivity in mouse V1</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-11-06</date><risdate>2018</risdate><volume>115</volume><issue>45</issue><spage>11619</spage><epage>11624</epage><pages>11619-11624</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recent experiments have shown that mouse primary visual cortex (V1) is very different from that of cat or monkey, including response properties—one of which is that contrast invariance in the orientation selectivity (OS) of the neurons’ firing rates is replaced in mouse with contrast-dependent sharpening (broadening) of OS in excitatory (inhibitory) neurons. These differences indicate a different circuit design for mouse V1 than that of cat or monkey. Here we develop a large-scale computational model of an effective input layer of mouse V1. Constrained by experiment data, the model successfully reproduces experimentally observed response properties—for example, distributions of firing rates, orientation tuning widths, and response modulations of simple and complex neurons, including the contrast dependence of orientation tuning curves. Analysis of the model shows that strong feedback inhibition and strong orientation-preferential cortical excitation to the excitatory population are the predominant mechanisms underlying the contrast-sharpening of OS in excitatory neurons, while the contrast-broadening of OS in inhibitory neurons results from a strong but nonpreferential cortical excitation to these inhibitory neurons, with the resulting contrast-broadened inhibition producing a secondary enhancement on the contrast-sharpened OS of excitatory neurons. Finally, based on these mechanisms, we show that adjusting the detailed balances between the predominant mechanisms can lead to contrast invariance—providing insights for future studies on contrast dependence (invariance).</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30337480</pmid><doi>10.1073/pnas.1719044115</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-11, Vol.115 (45), p.11619-11624
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6233123
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Circuit design
Computational neuroscience
Dependence
Excitation
Feedback inhibition
Invariance
Mouse devices
Neurons
Orientation
Orientation behavior
Rodents
Selectivity
Sharpening
Tuning
Visual cortex
title Mechanisms underlying contrast-dependent orientation selectivity in mouse V1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20underlying%20contrast-dependent%20orientation%20selectivity%20in%20mouse%20V1&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dai,%20Wei%20P.&rft.date=2018-11-06&rft.volume=115&rft.issue=45&rft.spage=11619&rft.epage=11624&rft.pages=11619-11624&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1719044115&rft_dat=%3Cjstor_pubme%3E26563192%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131833506&rft_id=info:pmid/30337480&rft_jstor_id=26563192&rfr_iscdi=true