Gβγ SNARE Interactions and Their Behavioral Effects
Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses—GPCRs are present at every studied presynaptic terminal—underlies their cr...
Gespeichert in:
Veröffentlicht in: | Neurochemical research 2019-03, Vol.44 (3), p.636-649 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 649 |
---|---|
container_issue | 3 |
container_start_page | 636 |
container_title | Neurochemical research |
container_volume | 44 |
creator | Alford, Simon Hamm, Heidi Rodriguez, Shelagh Zurawski, Zack |
description | Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses—GPCRs are present at every studied presynaptic terminal—underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca
2+
entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca
2+
-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca
2+
sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca
2+
-dependent K
+
channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system. |
doi_str_mv | 10.1007/s11064-018-2531-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6230518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037261538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385x-75a01a984f6f6e6b8fd16b0c8a02cc15cfb3dc14707072bf27da9ad87598130c3</originalsourceid><addsrcrecordid>eNp1kc1OGzEUhS1URFLgAdhUI3XDZuBeO_6ZTSVAKSAhkCCsLY_HTgYlM9SeoPBa7XvwTHgUCC1S5cVdnO8c36tDyAHCEQLI44gIYpQDqpxyhvlqiwyRS5aLAtgXMgSWVIYFDMjXGB8AkoviDhnQQnIq6GhI-PnL75c_2d31ye04u2w6F4zt6raJmWmqbDJzdchO3cw81W0w82zsvbNd3CPb3syj23-bu-T-53hydpFf3Zxfnp1c5ZYpvsolN4CmUCMvvHCiVL5CUYJVBqi1yK0vWWVxJCE9WnoqK1OYSkleKGRg2S75sc59XJYLV1nXdGkL_RjqhQnPujW1_ldp6pmetk9aUAYcVQo4fAsI7a-li51e1NG6-dw0rl1GTYEpKlHKHv3-CX1ol6FJ5_WUpAI56ylcUza0MQbnN8sg6L4UvS5Fp1J0X4peJc-3v6_YON5bSABdAzFJzdSFj6__n_oKoL6YAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037261538</pqid></control><display><type>article</type><title>Gβγ SNARE Interactions and Their Behavioral Effects</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Alford, Simon ; Hamm, Heidi ; Rodriguez, Shelagh ; Zurawski, Zack</creator><creatorcontrib>Alford, Simon ; Hamm, Heidi ; Rodriguez, Shelagh ; Zurawski, Zack</creatorcontrib><description>Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses—GPCRs are present at every studied presynaptic terminal—underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca
2+
entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca
2+
-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca
2+
sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca
2+
-dependent K
+
channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.</description><identifier>ISSN: 0364-3190</identifier><identifier>EISSN: 1573-6903</identifier><identifier>DOI: 10.1007/s11064-018-2531-x</identifier><identifier>PMID: 29752624</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Action potential ; Action Potentials - physiology ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Calcium ; Calcium - metabolism ; Calcium channels ; Calcium influx ; Calcium ions ; Cell Biology ; Central nervous system ; Exocytosis ; Exocytosis - physiology ; G protein-coupled receptors ; Humans ; Locomotion ; Modulation ; Molecular chains ; Molecular modelling ; Neurochemistry ; Neurology ; Neurosciences ; Original Paper ; Potassium channels (calcium-gated) ; Presynaptic Terminals - physiology ; Proteins ; Receptors ; Signal transduction ; SNAP receptors ; SNARE Proteins - metabolism ; Spinal cord ; Synapses ; Synaptic Transmission - physiology ; Synaptotagmin ; Vertebrates ; Vesicle fusion</subject><ispartof>Neurochemical research, 2019-03, Vol.44 (3), p.636-649</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Neurochemical Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385x-75a01a984f6f6e6b8fd16b0c8a02cc15cfb3dc14707072bf27da9ad87598130c3</citedby><cites>FETCH-LOGICAL-c385x-75a01a984f6f6e6b8fd16b0c8a02cc15cfb3dc14707072bf27da9ad87598130c3</cites><orcidid>0000-0002-0454-4246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11064-018-2531-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11064-018-2531-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29752624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alford, Simon</creatorcontrib><creatorcontrib>Hamm, Heidi</creatorcontrib><creatorcontrib>Rodriguez, Shelagh</creatorcontrib><creatorcontrib>Zurawski, Zack</creatorcontrib><title>Gβγ SNARE Interactions and Their Behavioral Effects</title><title>Neurochemical research</title><addtitle>Neurochem Res</addtitle><addtitle>Neurochem Res</addtitle><description>Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses—GPCRs are present at every studied presynaptic terminal—underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca
2+
entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca
2+
-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca
2+
sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca
2+
-dependent K
+
channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.</description><subject>Action potential</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium channels</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Cell Biology</subject><subject>Central nervous system</subject><subject>Exocytosis</subject><subject>Exocytosis - physiology</subject><subject>G protein-coupled receptors</subject><subject>Humans</subject><subject>Locomotion</subject><subject>Modulation</subject><subject>Molecular chains</subject><subject>Molecular modelling</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Potassium channels (calcium-gated)</subject><subject>Presynaptic Terminals - physiology</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Signal transduction</subject><subject>SNAP receptors</subject><subject>SNARE Proteins - metabolism</subject><subject>Spinal cord</subject><subject>Synapses</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptotagmin</subject><subject>Vertebrates</subject><subject>Vesicle fusion</subject><issn>0364-3190</issn><issn>1573-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1OGzEUhS1URFLgAdhUI3XDZuBeO_6ZTSVAKSAhkCCsLY_HTgYlM9SeoPBa7XvwTHgUCC1S5cVdnO8c36tDyAHCEQLI44gIYpQDqpxyhvlqiwyRS5aLAtgXMgSWVIYFDMjXGB8AkoviDhnQQnIq6GhI-PnL75c_2d31ye04u2w6F4zt6raJmWmqbDJzdchO3cw81W0w82zsvbNd3CPb3syj23-bu-T-53hydpFf3Zxfnp1c5ZYpvsolN4CmUCMvvHCiVL5CUYJVBqi1yK0vWWVxJCE9WnoqK1OYSkleKGRg2S75sc59XJYLV1nXdGkL_RjqhQnPujW1_ldp6pmetk9aUAYcVQo4fAsI7a-li51e1NG6-dw0rl1GTYEpKlHKHv3-CX1ol6FJ5_WUpAI56ylcUza0MQbnN8sg6L4UvS5Fp1J0X4peJc-3v6_YON5bSABdAzFJzdSFj6__n_oKoL6YAA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Alford, Simon</creator><creator>Hamm, Heidi</creator><creator>Rodriguez, Shelagh</creator><creator>Zurawski, Zack</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0454-4246</orcidid></search><sort><creationdate>20190301</creationdate><title>Gβγ SNARE Interactions and Their Behavioral Effects</title><author>Alford, Simon ; Hamm, Heidi ; Rodriguez, Shelagh ; Zurawski, Zack</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385x-75a01a984f6f6e6b8fd16b0c8a02cc15cfb3dc14707072bf27da9ad87598130c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Action potential</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium channels</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Cell Biology</topic><topic>Central nervous system</topic><topic>Exocytosis</topic><topic>Exocytosis - physiology</topic><topic>G protein-coupled receptors</topic><topic>Humans</topic><topic>Locomotion</topic><topic>Modulation</topic><topic>Molecular chains</topic><topic>Molecular modelling</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Potassium channels (calcium-gated)</topic><topic>Presynaptic Terminals - physiology</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Signal transduction</topic><topic>SNAP receptors</topic><topic>SNARE Proteins - metabolism</topic><topic>Spinal cord</topic><topic>Synapses</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptotagmin</topic><topic>Vertebrates</topic><topic>Vesicle fusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alford, Simon</creatorcontrib><creatorcontrib>Hamm, Heidi</creatorcontrib><creatorcontrib>Rodriguez, Shelagh</creatorcontrib><creatorcontrib>Zurawski, Zack</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alford, Simon</au><au>Hamm, Heidi</au><au>Rodriguez, Shelagh</au><au>Zurawski, Zack</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gβγ SNARE Interactions and Their Behavioral Effects</atitle><jtitle>Neurochemical research</jtitle><stitle>Neurochem Res</stitle><addtitle>Neurochem Res</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>44</volume><issue>3</issue><spage>636</spage><epage>649</epage><pages>636-649</pages><issn>0364-3190</issn><eissn>1573-6903</eissn><abstract>Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses—GPCRs are present at every studied presynaptic terminal—underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca
2+
entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca
2+
-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca
2+
sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca
2+
-dependent K
+
channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29752624</pmid><doi>10.1007/s11064-018-2531-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0454-4246</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-3190 |
ispartof | Neurochemical research, 2019-03, Vol.44 (3), p.636-649 |
issn | 0364-3190 1573-6903 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6230518 |
source | MEDLINE; SpringerNature Journals |
subjects | Action potential Action Potentials - physiology Animals Biochemistry Biomedical and Life Sciences Biomedicine Calcium Calcium - metabolism Calcium channels Calcium influx Calcium ions Cell Biology Central nervous system Exocytosis Exocytosis - physiology G protein-coupled receptors Humans Locomotion Modulation Molecular chains Molecular modelling Neurochemistry Neurology Neurosciences Original Paper Potassium channels (calcium-gated) Presynaptic Terminals - physiology Proteins Receptors Signal transduction SNAP receptors SNARE Proteins - metabolism Spinal cord Synapses Synaptic Transmission - physiology Synaptotagmin Vertebrates Vesicle fusion |
title | Gβγ SNARE Interactions and Their Behavioral Effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=G%CE%B2%CE%B3%20SNARE%20Interactions%20and%20Their%20Behavioral%20Effects&rft.jtitle=Neurochemical%20research&rft.au=Alford,%20Simon&rft.date=2019-03-01&rft.volume=44&rft.issue=3&rft.spage=636&rft.epage=649&rft.pages=636-649&rft.issn=0364-3190&rft.eissn=1573-6903&rft_id=info:doi/10.1007/s11064-018-2531-x&rft_dat=%3Cproquest_pubme%3E2037261538%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037261538&rft_id=info:pmid/29752624&rfr_iscdi=true |