Gβγ SNARE Interactions and Their Behavioral Effects

Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses—GPCRs are present at every studied presynaptic terminal—underlies their cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2019-03, Vol.44 (3), p.636-649
Hauptverfasser: Alford, Simon, Hamm, Heidi, Rodriguez, Shelagh, Zurawski, Zack
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 649
container_issue 3
container_start_page 636
container_title Neurochemical research
container_volume 44
creator Alford, Simon
Hamm, Heidi
Rodriguez, Shelagh
Zurawski, Zack
description Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses—GPCRs are present at every studied presynaptic terminal—underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca 2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca 2+ -sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca 2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca 2+ -dependent K + channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.
doi_str_mv 10.1007/s11064-018-2531-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6230518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037261538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385x-75a01a984f6f6e6b8fd16b0c8a02cc15cfb3dc14707072bf27da9ad87598130c3</originalsourceid><addsrcrecordid>eNp1kc1OGzEUhS1URFLgAdhUI3XDZuBeO_6ZTSVAKSAhkCCsLY_HTgYlM9SeoPBa7XvwTHgUCC1S5cVdnO8c36tDyAHCEQLI44gIYpQDqpxyhvlqiwyRS5aLAtgXMgSWVIYFDMjXGB8AkoviDhnQQnIq6GhI-PnL75c_2d31ye04u2w6F4zt6raJmWmqbDJzdchO3cw81W0w82zsvbNd3CPb3syj23-bu-T-53hydpFf3Zxfnp1c5ZYpvsolN4CmUCMvvHCiVL5CUYJVBqi1yK0vWWVxJCE9WnoqK1OYSkleKGRg2S75sc59XJYLV1nXdGkL_RjqhQnPujW1_ldp6pmetk9aUAYcVQo4fAsI7a-li51e1NG6-dw0rl1GTYEpKlHKHv3-CX1ol6FJ5_WUpAI56ylcUza0MQbnN8sg6L4UvS5Fp1J0X4peJc-3v6_YON5bSABdAzFJzdSFj6__n_oKoL6YAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037261538</pqid></control><display><type>article</type><title>Gβγ SNARE Interactions and Their Behavioral Effects</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Alford, Simon ; Hamm, Heidi ; Rodriguez, Shelagh ; Zurawski, Zack</creator><creatorcontrib>Alford, Simon ; Hamm, Heidi ; Rodriguez, Shelagh ; Zurawski, Zack</creatorcontrib><description>Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses—GPCRs are present at every studied presynaptic terminal—underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca 2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca 2+ -sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca 2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca 2+ -dependent K + channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.</description><identifier>ISSN: 0364-3190</identifier><identifier>EISSN: 1573-6903</identifier><identifier>DOI: 10.1007/s11064-018-2531-x</identifier><identifier>PMID: 29752624</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Action potential ; Action Potentials - physiology ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Calcium ; Calcium - metabolism ; Calcium channels ; Calcium influx ; Calcium ions ; Cell Biology ; Central nervous system ; Exocytosis ; Exocytosis - physiology ; G protein-coupled receptors ; Humans ; Locomotion ; Modulation ; Molecular chains ; Molecular modelling ; Neurochemistry ; Neurology ; Neurosciences ; Original Paper ; Potassium channels (calcium-gated) ; Presynaptic Terminals - physiology ; Proteins ; Receptors ; Signal transduction ; SNAP receptors ; SNARE Proteins - metabolism ; Spinal cord ; Synapses ; Synaptic Transmission - physiology ; Synaptotagmin ; Vertebrates ; Vesicle fusion</subject><ispartof>Neurochemical research, 2019-03, Vol.44 (3), p.636-649</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Neurochemical Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385x-75a01a984f6f6e6b8fd16b0c8a02cc15cfb3dc14707072bf27da9ad87598130c3</citedby><cites>FETCH-LOGICAL-c385x-75a01a984f6f6e6b8fd16b0c8a02cc15cfb3dc14707072bf27da9ad87598130c3</cites><orcidid>0000-0002-0454-4246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11064-018-2531-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11064-018-2531-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29752624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alford, Simon</creatorcontrib><creatorcontrib>Hamm, Heidi</creatorcontrib><creatorcontrib>Rodriguez, Shelagh</creatorcontrib><creatorcontrib>Zurawski, Zack</creatorcontrib><title>Gβγ SNARE Interactions and Their Behavioral Effects</title><title>Neurochemical research</title><addtitle>Neurochem Res</addtitle><addtitle>Neurochem Res</addtitle><description>Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses—GPCRs are present at every studied presynaptic terminal—underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca 2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca 2+ -sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca 2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca 2+ -dependent K + channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.</description><subject>Action potential</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium channels</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Cell Biology</subject><subject>Central nervous system</subject><subject>Exocytosis</subject><subject>Exocytosis - physiology</subject><subject>G protein-coupled receptors</subject><subject>Humans</subject><subject>Locomotion</subject><subject>Modulation</subject><subject>Molecular chains</subject><subject>Molecular modelling</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Potassium channels (calcium-gated)</subject><subject>Presynaptic Terminals - physiology</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Signal transduction</subject><subject>SNAP receptors</subject><subject>SNARE Proteins - metabolism</subject><subject>Spinal cord</subject><subject>Synapses</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptotagmin</subject><subject>Vertebrates</subject><subject>Vesicle fusion</subject><issn>0364-3190</issn><issn>1573-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1OGzEUhS1URFLgAdhUI3XDZuBeO_6ZTSVAKSAhkCCsLY_HTgYlM9SeoPBa7XvwTHgUCC1S5cVdnO8c36tDyAHCEQLI44gIYpQDqpxyhvlqiwyRS5aLAtgXMgSWVIYFDMjXGB8AkoviDhnQQnIq6GhI-PnL75c_2d31ye04u2w6F4zt6raJmWmqbDJzdchO3cw81W0w82zsvbNd3CPb3syj23-bu-T-53hydpFf3Zxfnp1c5ZYpvsolN4CmUCMvvHCiVL5CUYJVBqi1yK0vWWVxJCE9WnoqK1OYSkleKGRg2S75sc59XJYLV1nXdGkL_RjqhQnPujW1_ldp6pmetk9aUAYcVQo4fAsI7a-li51e1NG6-dw0rl1GTYEpKlHKHv3-CX1ol6FJ5_WUpAI56ylcUza0MQbnN8sg6L4UvS5Fp1J0X4peJc-3v6_YON5bSABdAzFJzdSFj6__n_oKoL6YAA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Alford, Simon</creator><creator>Hamm, Heidi</creator><creator>Rodriguez, Shelagh</creator><creator>Zurawski, Zack</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0454-4246</orcidid></search><sort><creationdate>20190301</creationdate><title>Gβγ SNARE Interactions and Their Behavioral Effects</title><author>Alford, Simon ; Hamm, Heidi ; Rodriguez, Shelagh ; Zurawski, Zack</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385x-75a01a984f6f6e6b8fd16b0c8a02cc15cfb3dc14707072bf27da9ad87598130c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Action potential</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium channels</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Cell Biology</topic><topic>Central nervous system</topic><topic>Exocytosis</topic><topic>Exocytosis - physiology</topic><topic>G protein-coupled receptors</topic><topic>Humans</topic><topic>Locomotion</topic><topic>Modulation</topic><topic>Molecular chains</topic><topic>Molecular modelling</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Potassium channels (calcium-gated)</topic><topic>Presynaptic Terminals - physiology</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Signal transduction</topic><topic>SNAP receptors</topic><topic>SNARE Proteins - metabolism</topic><topic>Spinal cord</topic><topic>Synapses</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptotagmin</topic><topic>Vertebrates</topic><topic>Vesicle fusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alford, Simon</creatorcontrib><creatorcontrib>Hamm, Heidi</creatorcontrib><creatorcontrib>Rodriguez, Shelagh</creatorcontrib><creatorcontrib>Zurawski, Zack</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alford, Simon</au><au>Hamm, Heidi</au><au>Rodriguez, Shelagh</au><au>Zurawski, Zack</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gβγ SNARE Interactions and Their Behavioral Effects</atitle><jtitle>Neurochemical research</jtitle><stitle>Neurochem Res</stitle><addtitle>Neurochem Res</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>44</volume><issue>3</issue><spage>636</spage><epage>649</epage><pages>636-649</pages><issn>0364-3190</issn><eissn>1573-6903</eissn><abstract>Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses—GPCRs are present at every studied presynaptic terminal—underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca 2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca 2+ -sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca 2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca 2+ -dependent K + channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29752624</pmid><doi>10.1007/s11064-018-2531-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0454-4246</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-3190
ispartof Neurochemical research, 2019-03, Vol.44 (3), p.636-649
issn 0364-3190
1573-6903
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6230518
source MEDLINE; SpringerNature Journals
subjects Action potential
Action Potentials - physiology
Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Calcium
Calcium - metabolism
Calcium channels
Calcium influx
Calcium ions
Cell Biology
Central nervous system
Exocytosis
Exocytosis - physiology
G protein-coupled receptors
Humans
Locomotion
Modulation
Molecular chains
Molecular modelling
Neurochemistry
Neurology
Neurosciences
Original Paper
Potassium channels (calcium-gated)
Presynaptic Terminals - physiology
Proteins
Receptors
Signal transduction
SNAP receptors
SNARE Proteins - metabolism
Spinal cord
Synapses
Synaptic Transmission - physiology
Synaptotagmin
Vertebrates
Vesicle fusion
title Gβγ SNARE Interactions and Their Behavioral Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=G%CE%B2%CE%B3%20SNARE%20Interactions%20and%20Their%20Behavioral%20Effects&rft.jtitle=Neurochemical%20research&rft.au=Alford,%20Simon&rft.date=2019-03-01&rft.volume=44&rft.issue=3&rft.spage=636&rft.epage=649&rft.pages=636-649&rft.issn=0364-3190&rft.eissn=1573-6903&rft_id=info:doi/10.1007/s11064-018-2531-x&rft_dat=%3Cproquest_pubme%3E2037261538%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037261538&rft_id=info:pmid/29752624&rfr_iscdi=true