Acoustic Compressibility of Caenorhabditis elegans
The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajecto...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2018-11, Vol.115 (9), p.1817-1825 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1825 |
---|---|
container_issue | 9 |
container_start_page | 1817 |
container_title | Biophysical journal |
container_volume | 115 |
creator | Baasch, Thierry Reichert, Peter Lakämper, Stefan Vertti-Quintero, Nadia Hack, Gamuret Casadevall i Solvas, Xavier deMello, Andrew Gunawan, Rudiyanto Dual, Jürg |
description | The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajectory velocimetry of L1 C. elegans larvae to estimate the acoustic compressibility of C. elegans. A method based on bulk acoustic wave acoustophoresis was used for trajectory velocimetry experiments in a microfluidic channel. The model-based data analysis took into account the different sizes and shapes of L1 C. elegans larvae (255 ± 26 μm in length and 15 ± 2 μm in diameter). Moreover, the top and bottom walls of the microfluidic channel were considered in the hydrodynamic drag coefficient calculations, for both the C. elegans and the calibration particles. The hydrodynamic interaction between the specimen and the channel walls was further minimized by acoustically levitating the C. elegans and the particles to the middle of the measurement channel. Our data suggest an acoustic compressibility κCe of 430 TPa−1 with an uncertainty range of ±20 TPa−1 for C. elegans, a much lower value than what was previously reported for adult C. elegans using static methods. Our estimated compressibility is consistent with the relative volume fraction of lipids and proteins that would mainly make up for the body of C. elegans. This work is a departing point for practical engineering and design criteria for integrated acoustofluidic devices for biological applications. |
doi_str_mv | 10.1016/j.bpj.2018.08.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6224677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349518310683</els_id><sourcerecordid>2119920437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-977f07f7356a6bf068080503c8fddd4e0539d041111a419e3fcfcf262e0bc8f83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZ_gBfp0cvWycdmdxEEKX5BwYueQzY726ZsNzXZFvrvzdJa9GIykEOevDN5CLmmMKFA5d1yUq6XEwY0n0AskZ-QIU0FSwByeUqGACATLop0QC5CWAJQlgI9JwMOnAqZiiFhj8ZtQmfNeOpWa48h2NI2ttuNXT2eamydX-iysp0NY2xwrttwSc5q3QS8Opwj8vn89DF9TWbvL2_Tx1liREq7pMiyGrI646nUsqxB5pBDCtzkdVVVAiHlRQWCxqUFLZDXJm4mGUIZmZyPyMM-d70pV1gZbDuvG7X2dqX9Tjlt1d-b1i7U3G2VZEzILIsBt4cA7742GDq1ssFg0-gW46cVo7QoGAjeo3SPGu9C8Fgf21BQvWu1VNG16l0riCX6-W5-z3d88SM3Avd7AKOlrUWvgrHYGqysR9Opytl_4r8BOkSPuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119920437</pqid></control><display><type>article</type><title>Acoustic Compressibility of Caenorhabditis elegans</title><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals Complete</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Baasch, Thierry ; Reichert, Peter ; Lakämper, Stefan ; Vertti-Quintero, Nadia ; Hack, Gamuret ; Casadevall i Solvas, Xavier ; deMello, Andrew ; Gunawan, Rudiyanto ; Dual, Jürg</creator><creatorcontrib>Baasch, Thierry ; Reichert, Peter ; Lakämper, Stefan ; Vertti-Quintero, Nadia ; Hack, Gamuret ; Casadevall i Solvas, Xavier ; deMello, Andrew ; Gunawan, Rudiyanto ; Dual, Jürg</creatorcontrib><description>The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajectory velocimetry of L1 C. elegans larvae to estimate the acoustic compressibility of C. elegans. A method based on bulk acoustic wave acoustophoresis was used for trajectory velocimetry experiments in a microfluidic channel. The model-based data analysis took into account the different sizes and shapes of L1 C. elegans larvae (255 ± 26 μm in length and 15 ± 2 μm in diameter). Moreover, the top and bottom walls of the microfluidic channel were considered in the hydrodynamic drag coefficient calculations, for both the C. elegans and the calibration particles. The hydrodynamic interaction between the specimen and the channel walls was further minimized by acoustically levitating the C. elegans and the particles to the middle of the measurement channel. Our data suggest an acoustic compressibility κCe of 430 TPa−1 with an uncertainty range of ±20 TPa−1 for C. elegans, a much lower value than what was previously reported for adult C. elegans using static methods. Our estimated compressibility is consistent with the relative volume fraction of lipids and proteins that would mainly make up for the body of C. elegans. This work is a departing point for practical engineering and design criteria for integrated acoustofluidic devices for biological applications.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2018.08.048</identifier><identifier>PMID: 30314654</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Systems Biophysics</subject><ispartof>Biophysical journal, 2018-11, Vol.115 (9), p.1817-1825</ispartof><rights>2018 Biophysical Society</rights><rights>Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2018 Biophysical Society. 2018 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-977f07f7356a6bf068080503c8fddd4e0539d041111a419e3fcfcf262e0bc8f83</citedby><cites>FETCH-LOGICAL-c451t-977f07f7356a6bf068080503c8fddd4e0539d041111a419e3fcfcf262e0bc8f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224677/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2018.08.048$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30314654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baasch, Thierry</creatorcontrib><creatorcontrib>Reichert, Peter</creatorcontrib><creatorcontrib>Lakämper, Stefan</creatorcontrib><creatorcontrib>Vertti-Quintero, Nadia</creatorcontrib><creatorcontrib>Hack, Gamuret</creatorcontrib><creatorcontrib>Casadevall i Solvas, Xavier</creatorcontrib><creatorcontrib>deMello, Andrew</creatorcontrib><creatorcontrib>Gunawan, Rudiyanto</creatorcontrib><creatorcontrib>Dual, Jürg</creatorcontrib><title>Acoustic Compressibility of Caenorhabditis elegans</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajectory velocimetry of L1 C. elegans larvae to estimate the acoustic compressibility of C. elegans. A method based on bulk acoustic wave acoustophoresis was used for trajectory velocimetry experiments in a microfluidic channel. The model-based data analysis took into account the different sizes and shapes of L1 C. elegans larvae (255 ± 26 μm in length and 15 ± 2 μm in diameter). Moreover, the top and bottom walls of the microfluidic channel were considered in the hydrodynamic drag coefficient calculations, for both the C. elegans and the calibration particles. The hydrodynamic interaction between the specimen and the channel walls was further minimized by acoustically levitating the C. elegans and the particles to the middle of the measurement channel. Our data suggest an acoustic compressibility κCe of 430 TPa−1 with an uncertainty range of ±20 TPa−1 for C. elegans, a much lower value than what was previously reported for adult C. elegans using static methods. Our estimated compressibility is consistent with the relative volume fraction of lipids and proteins that would mainly make up for the body of C. elegans. This work is a departing point for practical engineering and design criteria for integrated acoustofluidic devices for biological applications.</description><subject>Systems Biophysics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlZ_gBfp0cvWycdmdxEEKX5BwYueQzY726ZsNzXZFvrvzdJa9GIykEOevDN5CLmmMKFA5d1yUq6XEwY0n0AskZ-QIU0FSwByeUqGACATLop0QC5CWAJQlgI9JwMOnAqZiiFhj8ZtQmfNeOpWa48h2NI2ttuNXT2eamydX-iysp0NY2xwrttwSc5q3QS8Opwj8vn89DF9TWbvL2_Tx1liREq7pMiyGrI646nUsqxB5pBDCtzkdVVVAiHlRQWCxqUFLZDXJm4mGUIZmZyPyMM-d70pV1gZbDuvG7X2dqX9Tjlt1d-b1i7U3G2VZEzILIsBt4cA7742GDq1ssFg0-gW46cVo7QoGAjeo3SPGu9C8Fgf21BQvWu1VNG16l0riCX6-W5-z3d88SM3Avd7AKOlrUWvgrHYGqysR9Opytl_4r8BOkSPuA</recordid><startdate>20181106</startdate><enddate>20181106</enddate><creator>Baasch, Thierry</creator><creator>Reichert, Peter</creator><creator>Lakämper, Stefan</creator><creator>Vertti-Quintero, Nadia</creator><creator>Hack, Gamuret</creator><creator>Casadevall i Solvas, Xavier</creator><creator>deMello, Andrew</creator><creator>Gunawan, Rudiyanto</creator><creator>Dual, Jürg</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181106</creationdate><title>Acoustic Compressibility of Caenorhabditis elegans</title><author>Baasch, Thierry ; Reichert, Peter ; Lakämper, Stefan ; Vertti-Quintero, Nadia ; Hack, Gamuret ; Casadevall i Solvas, Xavier ; deMello, Andrew ; Gunawan, Rudiyanto ; Dual, Jürg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-977f07f7356a6bf068080503c8fddd4e0539d041111a419e3fcfcf262e0bc8f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Systems Biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baasch, Thierry</creatorcontrib><creatorcontrib>Reichert, Peter</creatorcontrib><creatorcontrib>Lakämper, Stefan</creatorcontrib><creatorcontrib>Vertti-Quintero, Nadia</creatorcontrib><creatorcontrib>Hack, Gamuret</creatorcontrib><creatorcontrib>Casadevall i Solvas, Xavier</creatorcontrib><creatorcontrib>deMello, Andrew</creatorcontrib><creatorcontrib>Gunawan, Rudiyanto</creatorcontrib><creatorcontrib>Dual, Jürg</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baasch, Thierry</au><au>Reichert, Peter</au><au>Lakämper, Stefan</au><au>Vertti-Quintero, Nadia</au><au>Hack, Gamuret</au><au>Casadevall i Solvas, Xavier</au><au>deMello, Andrew</au><au>Gunawan, Rudiyanto</au><au>Dual, Jürg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic Compressibility of Caenorhabditis elegans</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2018-11-06</date><risdate>2018</risdate><volume>115</volume><issue>9</issue><spage>1817</spage><epage>1825</epage><pages>1817-1825</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajectory velocimetry of L1 C. elegans larvae to estimate the acoustic compressibility of C. elegans. A method based on bulk acoustic wave acoustophoresis was used for trajectory velocimetry experiments in a microfluidic channel. The model-based data analysis took into account the different sizes and shapes of L1 C. elegans larvae (255 ± 26 μm in length and 15 ± 2 μm in diameter). Moreover, the top and bottom walls of the microfluidic channel were considered in the hydrodynamic drag coefficient calculations, for both the C. elegans and the calibration particles. The hydrodynamic interaction between the specimen and the channel walls was further minimized by acoustically levitating the C. elegans and the particles to the middle of the measurement channel. Our data suggest an acoustic compressibility κCe of 430 TPa−1 with an uncertainty range of ±20 TPa−1 for C. elegans, a much lower value than what was previously reported for adult C. elegans using static methods. Our estimated compressibility is consistent with the relative volume fraction of lipids and proteins that would mainly make up for the body of C. elegans. This work is a departing point for practical engineering and design criteria for integrated acoustofluidic devices for biological applications.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30314654</pmid><doi>10.1016/j.bpj.2018.08.048</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2018-11, Vol.115 (9), p.1817-1825 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6224677 |
source | Cell Press Archives; Elsevier ScienceDirect Journals Complete; PubMed Central; EZB Electronic Journals Library |
subjects | Systems Biophysics |
title | Acoustic Compressibility of Caenorhabditis elegans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20Compressibility%20of%20Caenorhabditis%20elegans&rft.jtitle=Biophysical%20journal&rft.au=Baasch,%20Thierry&rft.date=2018-11-06&rft.volume=115&rft.issue=9&rft.spage=1817&rft.epage=1825&rft.pages=1817-1825&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2018.08.048&rft_dat=%3Cproquest_pubme%3E2119920437%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119920437&rft_id=info:pmid/30314654&rft_els_id=S0006349518310683&rfr_iscdi=true |