Acoustic Compressibility of Caenorhabditis elegans

The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajecto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2018-11, Vol.115 (9), p.1817-1825
Hauptverfasser: Baasch, Thierry, Reichert, Peter, Lakämper, Stefan, Vertti-Quintero, Nadia, Hack, Gamuret, Casadevall i Solvas, Xavier, deMello, Andrew, Gunawan, Rudiyanto, Dual, Jürg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1825
container_issue 9
container_start_page 1817
container_title Biophysical journal
container_volume 115
creator Baasch, Thierry
Reichert, Peter
Lakämper, Stefan
Vertti-Quintero, Nadia
Hack, Gamuret
Casadevall i Solvas, Xavier
deMello, Andrew
Gunawan, Rudiyanto
Dual, Jürg
description The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajectory velocimetry of L1 C. elegans larvae to estimate the acoustic compressibility of C. elegans. A method based on bulk acoustic wave acoustophoresis was used for trajectory velocimetry experiments in a microfluidic channel. The model-based data analysis took into account the different sizes and shapes of L1 C. elegans larvae (255 ± 26 μm in length and 15 ± 2 μm in diameter). Moreover, the top and bottom walls of the microfluidic channel were considered in the hydrodynamic drag coefficient calculations, for both the C. elegans and the calibration particles. The hydrodynamic interaction between the specimen and the channel walls was further minimized by acoustically levitating the C. elegans and the particles to the middle of the measurement channel. Our data suggest an acoustic compressibility κCe of 430 TPa−1 with an uncertainty range of ±20 TPa−1 for C. elegans, a much lower value than what was previously reported for adult C. elegans using static methods. Our estimated compressibility is consistent with the relative volume fraction of lipids and proteins that would mainly make up for the body of C. elegans. This work is a departing point for practical engineering and design criteria for integrated acoustofluidic devices for biological applications.
doi_str_mv 10.1016/j.bpj.2018.08.048
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6224677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349518310683</els_id><sourcerecordid>2119920437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-977f07f7356a6bf068080503c8fddd4e0539d041111a419e3fcfcf262e0bc8f83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZ_gBfp0cvWycdmdxEEKX5BwYueQzY726ZsNzXZFvrvzdJa9GIykEOevDN5CLmmMKFA5d1yUq6XEwY0n0AskZ-QIU0FSwByeUqGACATLop0QC5CWAJQlgI9JwMOnAqZiiFhj8ZtQmfNeOpWa48h2NI2ttuNXT2eamydX-iysp0NY2xwrttwSc5q3QS8Opwj8vn89DF9TWbvL2_Tx1liREq7pMiyGrI646nUsqxB5pBDCtzkdVVVAiHlRQWCxqUFLZDXJm4mGUIZmZyPyMM-d70pV1gZbDuvG7X2dqX9Tjlt1d-b1i7U3G2VZEzILIsBt4cA7742GDq1ssFg0-gW46cVo7QoGAjeo3SPGu9C8Fgf21BQvWu1VNG16l0riCX6-W5-z3d88SM3Avd7AKOlrUWvgrHYGqysR9Opytl_4r8BOkSPuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119920437</pqid></control><display><type>article</type><title>Acoustic Compressibility of Caenorhabditis elegans</title><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals Complete</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Baasch, Thierry ; Reichert, Peter ; Lakämper, Stefan ; Vertti-Quintero, Nadia ; Hack, Gamuret ; Casadevall i Solvas, Xavier ; deMello, Andrew ; Gunawan, Rudiyanto ; Dual, Jürg</creator><creatorcontrib>Baasch, Thierry ; Reichert, Peter ; Lakämper, Stefan ; Vertti-Quintero, Nadia ; Hack, Gamuret ; Casadevall i Solvas, Xavier ; deMello, Andrew ; Gunawan, Rudiyanto ; Dual, Jürg</creatorcontrib><description>The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajectory velocimetry of L1 C. elegans larvae to estimate the acoustic compressibility of C. elegans. A method based on bulk acoustic wave acoustophoresis was used for trajectory velocimetry experiments in a microfluidic channel. The model-based data analysis took into account the different sizes and shapes of L1 C. elegans larvae (255 ± 26 μm in length and 15 ± 2 μm in diameter). Moreover, the top and bottom walls of the microfluidic channel were considered in the hydrodynamic drag coefficient calculations, for both the C. elegans and the calibration particles. The hydrodynamic interaction between the specimen and the channel walls was further minimized by acoustically levitating the C. elegans and the particles to the middle of the measurement channel. Our data suggest an acoustic compressibility κCe of 430 TPa−1 with an uncertainty range of ±20 TPa−1 for C. elegans, a much lower value than what was previously reported for adult C. elegans using static methods. Our estimated compressibility is consistent with the relative volume fraction of lipids and proteins that would mainly make up for the body of C. elegans. This work is a departing point for practical engineering and design criteria for integrated acoustofluidic devices for biological applications.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2018.08.048</identifier><identifier>PMID: 30314654</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Systems Biophysics</subject><ispartof>Biophysical journal, 2018-11, Vol.115 (9), p.1817-1825</ispartof><rights>2018 Biophysical Society</rights><rights>Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2018 Biophysical Society. 2018 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-977f07f7356a6bf068080503c8fddd4e0539d041111a419e3fcfcf262e0bc8f83</citedby><cites>FETCH-LOGICAL-c451t-977f07f7356a6bf068080503c8fddd4e0539d041111a419e3fcfcf262e0bc8f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224677/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2018.08.048$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30314654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baasch, Thierry</creatorcontrib><creatorcontrib>Reichert, Peter</creatorcontrib><creatorcontrib>Lakämper, Stefan</creatorcontrib><creatorcontrib>Vertti-Quintero, Nadia</creatorcontrib><creatorcontrib>Hack, Gamuret</creatorcontrib><creatorcontrib>Casadevall i Solvas, Xavier</creatorcontrib><creatorcontrib>deMello, Andrew</creatorcontrib><creatorcontrib>Gunawan, Rudiyanto</creatorcontrib><creatorcontrib>Dual, Jürg</creatorcontrib><title>Acoustic Compressibility of Caenorhabditis elegans</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajectory velocimetry of L1 C. elegans larvae to estimate the acoustic compressibility of C. elegans. A method based on bulk acoustic wave acoustophoresis was used for trajectory velocimetry experiments in a microfluidic channel. The model-based data analysis took into account the different sizes and shapes of L1 C. elegans larvae (255 ± 26 μm in length and 15 ± 2 μm in diameter). Moreover, the top and bottom walls of the microfluidic channel were considered in the hydrodynamic drag coefficient calculations, for both the C. elegans and the calibration particles. The hydrodynamic interaction between the specimen and the channel walls was further minimized by acoustically levitating the C. elegans and the particles to the middle of the measurement channel. Our data suggest an acoustic compressibility κCe of 430 TPa−1 with an uncertainty range of ±20 TPa−1 for C. elegans, a much lower value than what was previously reported for adult C. elegans using static methods. Our estimated compressibility is consistent with the relative volume fraction of lipids and proteins that would mainly make up for the body of C. elegans. This work is a departing point for practical engineering and design criteria for integrated acoustofluidic devices for biological applications.</description><subject>Systems Biophysics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlZ_gBfp0cvWycdmdxEEKX5BwYueQzY726ZsNzXZFvrvzdJa9GIykEOevDN5CLmmMKFA5d1yUq6XEwY0n0AskZ-QIU0FSwByeUqGACATLop0QC5CWAJQlgI9JwMOnAqZiiFhj8ZtQmfNeOpWa48h2NI2ttuNXT2eamydX-iysp0NY2xwrttwSc5q3QS8Opwj8vn89DF9TWbvL2_Tx1liREq7pMiyGrI646nUsqxB5pBDCtzkdVVVAiHlRQWCxqUFLZDXJm4mGUIZmZyPyMM-d70pV1gZbDuvG7X2dqX9Tjlt1d-b1i7U3G2VZEzILIsBt4cA7742GDq1ssFg0-gW46cVo7QoGAjeo3SPGu9C8Fgf21BQvWu1VNG16l0riCX6-W5-z3d88SM3Avd7AKOlrUWvgrHYGqysR9Opytl_4r8BOkSPuA</recordid><startdate>20181106</startdate><enddate>20181106</enddate><creator>Baasch, Thierry</creator><creator>Reichert, Peter</creator><creator>Lakämper, Stefan</creator><creator>Vertti-Quintero, Nadia</creator><creator>Hack, Gamuret</creator><creator>Casadevall i Solvas, Xavier</creator><creator>deMello, Andrew</creator><creator>Gunawan, Rudiyanto</creator><creator>Dual, Jürg</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181106</creationdate><title>Acoustic Compressibility of Caenorhabditis elegans</title><author>Baasch, Thierry ; Reichert, Peter ; Lakämper, Stefan ; Vertti-Quintero, Nadia ; Hack, Gamuret ; Casadevall i Solvas, Xavier ; deMello, Andrew ; Gunawan, Rudiyanto ; Dual, Jürg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-977f07f7356a6bf068080503c8fddd4e0539d041111a419e3fcfcf262e0bc8f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Systems Biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baasch, Thierry</creatorcontrib><creatorcontrib>Reichert, Peter</creatorcontrib><creatorcontrib>Lakämper, Stefan</creatorcontrib><creatorcontrib>Vertti-Quintero, Nadia</creatorcontrib><creatorcontrib>Hack, Gamuret</creatorcontrib><creatorcontrib>Casadevall i Solvas, Xavier</creatorcontrib><creatorcontrib>deMello, Andrew</creatorcontrib><creatorcontrib>Gunawan, Rudiyanto</creatorcontrib><creatorcontrib>Dual, Jürg</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baasch, Thierry</au><au>Reichert, Peter</au><au>Lakämper, Stefan</au><au>Vertti-Quintero, Nadia</au><au>Hack, Gamuret</au><au>Casadevall i Solvas, Xavier</au><au>deMello, Andrew</au><au>Gunawan, Rudiyanto</au><au>Dual, Jürg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic Compressibility of Caenorhabditis elegans</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2018-11-06</date><risdate>2018</risdate><volume>115</volume><issue>9</issue><spage>1817</spage><epage>1825</epage><pages>1817-1825</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajectory velocimetry of L1 C. elegans larvae to estimate the acoustic compressibility of C. elegans. A method based on bulk acoustic wave acoustophoresis was used for trajectory velocimetry experiments in a microfluidic channel. The model-based data analysis took into account the different sizes and shapes of L1 C. elegans larvae (255 ± 26 μm in length and 15 ± 2 μm in diameter). Moreover, the top and bottom walls of the microfluidic channel were considered in the hydrodynamic drag coefficient calculations, for both the C. elegans and the calibration particles. The hydrodynamic interaction between the specimen and the channel walls was further minimized by acoustically levitating the C. elegans and the particles to the middle of the measurement channel. Our data suggest an acoustic compressibility κCe of 430 TPa−1 with an uncertainty range of ±20 TPa−1 for C. elegans, a much lower value than what was previously reported for adult C. elegans using static methods. Our estimated compressibility is consistent with the relative volume fraction of lipids and proteins that would mainly make up for the body of C. elegans. This work is a departing point for practical engineering and design criteria for integrated acoustofluidic devices for biological applications.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30314654</pmid><doi>10.1016/j.bpj.2018.08.048</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2018-11, Vol.115 (9), p.1817-1825
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6224677
source Cell Press Archives; Elsevier ScienceDirect Journals Complete; PubMed Central; EZB Electronic Journals Library
subjects Systems Biophysics
title Acoustic Compressibility of Caenorhabditis elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20Compressibility%20of%20Caenorhabditis%20elegans&rft.jtitle=Biophysical%20journal&rft.au=Baasch,%20Thierry&rft.date=2018-11-06&rft.volume=115&rft.issue=9&rft.spage=1817&rft.epage=1825&rft.pages=1817-1825&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2018.08.048&rft_dat=%3Cproquest_pubme%3E2119920437%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119920437&rft_id=info:pmid/30314654&rft_els_id=S0006349518310683&rfr_iscdi=true