Numerical Simulation of Biomass Growth in OKTOP®9000 Reactor at Industrial Scale
Computational fluid dynamics is a powerful method for scale-up of reactors although it is still challenging to fully embrace hydrodynamics and biological complexities. In this article, an aerobic fermentation of Pichia pastoris cells is modeled in a batch OKTOP®9000 reactor. The 800 m3 industrial sc...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2018-10, Vol.57 (40), p.13300-13311 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13311 |
---|---|
container_issue | 40 |
container_start_page | 13300 |
container_title | Industrial & engineering chemistry research |
container_volume | 57 |
creator | Gradov, Dmitry Vladimirovich Han, Mei Tervasmäki, Petri Latva-Kokko, Marko Vaittinen, Johanna Pihlajamäki, Arto Koiranen, Tuomas |
description | Computational fluid dynamics is a powerful method for scale-up of reactors although it is still challenging to fully embrace hydrodynamics and biological complexities. In this article, an aerobic fermentation of Pichia pastoris cells is modeled in a batch OKTOP®9000 reactor. The 800 m3 industrial scale reactor is equipped with a radial impeller, designed by Outotec Oy for gas dispersion in the draft tube reactor. Measured N p of the impeller is used in hydrodynamics validation. The resolved energy dissipation rate is compensated, and its influence on mass transfer is analyzed and discussed. Gas–liquid drag force is modified to simulate effects of liquid turbulence and bubble swarms. Resolved steady state multiphase hydrodynamics is used to simulate the fermentation process. Temporal evolution of species concentrations is compared to experimental data measured in a small copy of the reactor at lab scale (14 L). The effect of oxygenation on the P. pastoris cells cultivation is considered. |
doi_str_mv | 10.1021/acs.iecr.8b02765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6219852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132292679</sourcerecordid><originalsourceid>FETCH-LOGICAL-a503t-44f3e1284672ed97d98413bb4e5a7be4ace480ca493b230eaf0ff9b78803a0773</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0Eokvhzgn5yIEs46_EviBBBaWiYvkoZ2vinVBXSVzsBMSf4kfwy8hqlwoOSJx8mPd9NJ6HsYcC1gKkeIqhrCOFvLYtyKY2t9hKGAmVAW1usxVYaytjrTli90q5AgBjtL7LjhRoUUtjVuz923mgHAP2_GMc5h6nmEaeOv4ipgFL4ac5fZsueRz55s3F5t3PH27B8A-EYUqZ48TPxu1cphx3hAVD99mdDvtCDw7vMfv06uXFyevqfHN6dvL8vEIDaqq07hQJaXXdSNq6ZuusFqptNRlsWtIYSFsIqJ1qpQLCDrrOtY21oBCaRh2zZ3vu9dwOtA00Thl7f53jgPm7Txj935MxXvrP6auvpXDWyAXw-ADI6ctMZfJDLIH6HkdKc_FSGFUr46T4j6iS0sm6cUsU9tGQUymZupuNBPidNL9I8ztp_iBtqTz68yc3hd-WlsCTfWBXvUpzHpfD_pv3C-a_o2I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132292679</pqid></control><display><type>article</type><title>Numerical Simulation of Biomass Growth in OKTOP®9000 Reactor at Industrial Scale</title><source>ACS Publications</source><creator>Gradov, Dmitry Vladimirovich ; Han, Mei ; Tervasmäki, Petri ; Latva-Kokko, Marko ; Vaittinen, Johanna ; Pihlajamäki, Arto ; Koiranen, Tuomas</creator><creatorcontrib>Gradov, Dmitry Vladimirovich ; Han, Mei ; Tervasmäki, Petri ; Latva-Kokko, Marko ; Vaittinen, Johanna ; Pihlajamäki, Arto ; Koiranen, Tuomas</creatorcontrib><description>Computational fluid dynamics is a powerful method for scale-up of reactors although it is still challenging to fully embrace hydrodynamics and biological complexities. In this article, an aerobic fermentation of Pichia pastoris cells is modeled in a batch OKTOP®9000 reactor. The 800 m3 industrial scale reactor is equipped with a radial impeller, designed by Outotec Oy for gas dispersion in the draft tube reactor. Measured N p of the impeller is used in hydrodynamics validation. The resolved energy dissipation rate is compensated, and its influence on mass transfer is analyzed and discussed. Gas–liquid drag force is modified to simulate effects of liquid turbulence and bubble swarms. Resolved steady state multiphase hydrodynamics is used to simulate the fermentation process. Temporal evolution of species concentrations is compared to experimental data measured in a small copy of the reactor at lab scale (14 L). The effect of oxygenation on the P. pastoris cells cultivation is considered.</description><identifier>ISSN: 0888-5885</identifier><identifier>ISSN: 1520-5045</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.8b02765</identifier><identifier>PMID: 30416255</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>biomass ; energy ; fermentation ; hydrodynamics ; impellers ; Komagataella pastoris ; liquids ; mass transfer ; mathematical models ; process design ; swarms ; turbulent flow</subject><ispartof>Industrial & engineering chemistry research, 2018-10, Vol.57 (40), p.13300-13311</ispartof><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a503t-44f3e1284672ed97d98413bb4e5a7be4ace480ca493b230eaf0ff9b78803a0773</citedby><cites>FETCH-LOGICAL-a503t-44f3e1284672ed97d98413bb4e5a7be4ace480ca493b230eaf0ff9b78803a0773</cites><orcidid>0000-0003-4222-0354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.8b02765$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.8b02765$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30416255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gradov, Dmitry Vladimirovich</creatorcontrib><creatorcontrib>Han, Mei</creatorcontrib><creatorcontrib>Tervasmäki, Petri</creatorcontrib><creatorcontrib>Latva-Kokko, Marko</creatorcontrib><creatorcontrib>Vaittinen, Johanna</creatorcontrib><creatorcontrib>Pihlajamäki, Arto</creatorcontrib><creatorcontrib>Koiranen, Tuomas</creatorcontrib><title>Numerical Simulation of Biomass Growth in OKTOP®9000 Reactor at Industrial Scale</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Computational fluid dynamics is a powerful method for scale-up of reactors although it is still challenging to fully embrace hydrodynamics and biological complexities. In this article, an aerobic fermentation of Pichia pastoris cells is modeled in a batch OKTOP®9000 reactor. The 800 m3 industrial scale reactor is equipped with a radial impeller, designed by Outotec Oy for gas dispersion in the draft tube reactor. Measured N p of the impeller is used in hydrodynamics validation. The resolved energy dissipation rate is compensated, and its influence on mass transfer is analyzed and discussed. Gas–liquid drag force is modified to simulate effects of liquid turbulence and bubble swarms. Resolved steady state multiphase hydrodynamics is used to simulate the fermentation process. Temporal evolution of species concentrations is compared to experimental data measured in a small copy of the reactor at lab scale (14 L). The effect of oxygenation on the P. pastoris cells cultivation is considered.</description><subject>biomass</subject><subject>energy</subject><subject>fermentation</subject><subject>hydrodynamics</subject><subject>impellers</subject><subject>Komagataella pastoris</subject><subject>liquids</subject><subject>mass transfer</subject><subject>mathematical models</subject><subject>process design</subject><subject>swarms</subject><subject>turbulent flow</subject><issn>0888-5885</issn><issn>1520-5045</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0Eokvhzgn5yIEs46_EviBBBaWiYvkoZ2vinVBXSVzsBMSf4kfwy8hqlwoOSJx8mPd9NJ6HsYcC1gKkeIqhrCOFvLYtyKY2t9hKGAmVAW1usxVYaytjrTli90q5AgBjtL7LjhRoUUtjVuz923mgHAP2_GMc5h6nmEaeOv4ipgFL4ac5fZsueRz55s3F5t3PH27B8A-EYUqZ48TPxu1cphx3hAVD99mdDvtCDw7vMfv06uXFyevqfHN6dvL8vEIDaqq07hQJaXXdSNq6ZuusFqptNRlsWtIYSFsIqJ1qpQLCDrrOtY21oBCaRh2zZ3vu9dwOtA00Thl7f53jgPm7Txj935MxXvrP6auvpXDWyAXw-ADI6ctMZfJDLIH6HkdKc_FSGFUr46T4j6iS0sm6cUsU9tGQUymZupuNBPidNL9I8ztp_iBtqTz68yc3hd-WlsCTfWBXvUpzHpfD_pv3C-a_o2I</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Gradov, Dmitry Vladimirovich</creator><creator>Han, Mei</creator><creator>Tervasmäki, Petri</creator><creator>Latva-Kokko, Marko</creator><creator>Vaittinen, Johanna</creator><creator>Pihlajamäki, Arto</creator><creator>Koiranen, Tuomas</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4222-0354</orcidid></search><sort><creationdate>20181010</creationdate><title>Numerical Simulation of Biomass Growth in OKTOP®9000 Reactor at Industrial Scale</title><author>Gradov, Dmitry Vladimirovich ; Han, Mei ; Tervasmäki, Petri ; Latva-Kokko, Marko ; Vaittinen, Johanna ; Pihlajamäki, Arto ; Koiranen, Tuomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a503t-44f3e1284672ed97d98413bb4e5a7be4ace480ca493b230eaf0ff9b78803a0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>biomass</topic><topic>energy</topic><topic>fermentation</topic><topic>hydrodynamics</topic><topic>impellers</topic><topic>Komagataella pastoris</topic><topic>liquids</topic><topic>mass transfer</topic><topic>mathematical models</topic><topic>process design</topic><topic>swarms</topic><topic>turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gradov, Dmitry Vladimirovich</creatorcontrib><creatorcontrib>Han, Mei</creatorcontrib><creatorcontrib>Tervasmäki, Petri</creatorcontrib><creatorcontrib>Latva-Kokko, Marko</creatorcontrib><creatorcontrib>Vaittinen, Johanna</creatorcontrib><creatorcontrib>Pihlajamäki, Arto</creatorcontrib><creatorcontrib>Koiranen, Tuomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gradov, Dmitry Vladimirovich</au><au>Han, Mei</au><au>Tervasmäki, Petri</au><au>Latva-Kokko, Marko</au><au>Vaittinen, Johanna</au><au>Pihlajamäki, Arto</au><au>Koiranen, Tuomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Biomass Growth in OKTOP®9000 Reactor at Industrial Scale</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2018-10-10</date><risdate>2018</risdate><volume>57</volume><issue>40</issue><spage>13300</spage><epage>13311</epage><pages>13300-13311</pages><issn>0888-5885</issn><issn>1520-5045</issn><eissn>1520-5045</eissn><abstract>Computational fluid dynamics is a powerful method for scale-up of reactors although it is still challenging to fully embrace hydrodynamics and biological complexities. In this article, an aerobic fermentation of Pichia pastoris cells is modeled in a batch OKTOP®9000 reactor. The 800 m3 industrial scale reactor is equipped with a radial impeller, designed by Outotec Oy for gas dispersion in the draft tube reactor. Measured N p of the impeller is used in hydrodynamics validation. The resolved energy dissipation rate is compensated, and its influence on mass transfer is analyzed and discussed. Gas–liquid drag force is modified to simulate effects of liquid turbulence and bubble swarms. Resolved steady state multiphase hydrodynamics is used to simulate the fermentation process. Temporal evolution of species concentrations is compared to experimental data measured in a small copy of the reactor at lab scale (14 L). The effect of oxygenation on the P. pastoris cells cultivation is considered.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30416255</pmid><doi>10.1021/acs.iecr.8b02765</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4222-0354</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2018-10, Vol.57 (40), p.13300-13311 |
issn | 0888-5885 1520-5045 1520-5045 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6219852 |
source | ACS Publications |
subjects | biomass energy fermentation hydrodynamics impellers Komagataella pastoris liquids mass transfer mathematical models process design swarms turbulent flow |
title | Numerical Simulation of Biomass Growth in OKTOP®9000 Reactor at Industrial Scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Biomass%20Growth%20in%20OKTOP%C2%AE9000%20Reactor%20at%20Industrial%20Scale&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Gradov,%20Dmitry%20Vladimirovich&rft.date=2018-10-10&rft.volume=57&rft.issue=40&rft.spage=13300&rft.epage=13311&rft.pages=13300-13311&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.8b02765&rft_dat=%3Cproquest_pubme%3E2132292679%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132292679&rft_id=info:pmid/30416255&rfr_iscdi=true |