Numerical Simulation of Biomass Growth in OKTOP®9000 Reactor at Industrial Scale

Computational fluid dynamics is a powerful method for scale-up of reactors although it is still challenging to fully embrace hydrodynamics and biological complexities. In this article, an aerobic fermentation of Pichia pastoris cells is modeled in a batch OKTOP®9000 reactor. The 800 m3 industrial sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2018-10, Vol.57 (40), p.13300-13311
Hauptverfasser: Gradov, Dmitry Vladimirovich, Han, Mei, Tervasmäki, Petri, Latva-Kokko, Marko, Vaittinen, Johanna, Pihlajamäki, Arto, Koiranen, Tuomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13311
container_issue 40
container_start_page 13300
container_title Industrial & engineering chemistry research
container_volume 57
creator Gradov, Dmitry Vladimirovich
Han, Mei
Tervasmäki, Petri
Latva-Kokko, Marko
Vaittinen, Johanna
Pihlajamäki, Arto
Koiranen, Tuomas
description Computational fluid dynamics is a powerful method for scale-up of reactors although it is still challenging to fully embrace hydrodynamics and biological complexities. In this article, an aerobic fermentation of Pichia pastoris cells is modeled in a batch OKTOP®9000 reactor. The 800 m3 industrial scale reactor is equipped with a radial impeller, designed by Outotec Oy for gas dispersion in the draft tube reactor. Measured N p of the impeller is used in hydrodynamics validation. The resolved energy dissipation rate is compensated, and its influence on mass transfer is analyzed and discussed. Gas–liquid drag force is modified to simulate effects of liquid turbulence and bubble swarms. Resolved steady state multiphase hydrodynamics is used to simulate the fermentation process. Temporal evolution of species concentrations is compared to experimental data measured in a small copy of the reactor at lab scale (14 L). The effect of oxygenation on the P. pastoris cells cultivation is considered.
doi_str_mv 10.1021/acs.iecr.8b02765
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6219852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132292679</sourcerecordid><originalsourceid>FETCH-LOGICAL-a503t-44f3e1284672ed97d98413bb4e5a7be4ace480ca493b230eaf0ff9b78803a0773</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0Eokvhzgn5yIEs46_EviBBBaWiYvkoZ2vinVBXSVzsBMSf4kfwy8hqlwoOSJx8mPd9NJ6HsYcC1gKkeIqhrCOFvLYtyKY2t9hKGAmVAW1usxVYaytjrTli90q5AgBjtL7LjhRoUUtjVuz923mgHAP2_GMc5h6nmEaeOv4ipgFL4ac5fZsueRz55s3F5t3PH27B8A-EYUqZ48TPxu1cphx3hAVD99mdDvtCDw7vMfv06uXFyevqfHN6dvL8vEIDaqq07hQJaXXdSNq6ZuusFqptNRlsWtIYSFsIqJ1qpQLCDrrOtY21oBCaRh2zZ3vu9dwOtA00Thl7f53jgPm7Txj935MxXvrP6auvpXDWyAXw-ADI6ctMZfJDLIH6HkdKc_FSGFUr46T4j6iS0sm6cUsU9tGQUymZupuNBPidNL9I8ztp_iBtqTz68yc3hd-WlsCTfWBXvUpzHpfD_pv3C-a_o2I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132292679</pqid></control><display><type>article</type><title>Numerical Simulation of Biomass Growth in OKTOP®9000 Reactor at Industrial Scale</title><source>ACS Publications</source><creator>Gradov, Dmitry Vladimirovich ; Han, Mei ; Tervasmäki, Petri ; Latva-Kokko, Marko ; Vaittinen, Johanna ; Pihlajamäki, Arto ; Koiranen, Tuomas</creator><creatorcontrib>Gradov, Dmitry Vladimirovich ; Han, Mei ; Tervasmäki, Petri ; Latva-Kokko, Marko ; Vaittinen, Johanna ; Pihlajamäki, Arto ; Koiranen, Tuomas</creatorcontrib><description>Computational fluid dynamics is a powerful method for scale-up of reactors although it is still challenging to fully embrace hydrodynamics and biological complexities. In this article, an aerobic fermentation of Pichia pastoris cells is modeled in a batch OKTOP®9000 reactor. The 800 m3 industrial scale reactor is equipped with a radial impeller, designed by Outotec Oy for gas dispersion in the draft tube reactor. Measured N p of the impeller is used in hydrodynamics validation. The resolved energy dissipation rate is compensated, and its influence on mass transfer is analyzed and discussed. Gas–liquid drag force is modified to simulate effects of liquid turbulence and bubble swarms. Resolved steady state multiphase hydrodynamics is used to simulate the fermentation process. Temporal evolution of species concentrations is compared to experimental data measured in a small copy of the reactor at lab scale (14 L). The effect of oxygenation on the P. pastoris cells cultivation is considered.</description><identifier>ISSN: 0888-5885</identifier><identifier>ISSN: 1520-5045</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.8b02765</identifier><identifier>PMID: 30416255</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>biomass ; energy ; fermentation ; hydrodynamics ; impellers ; Komagataella pastoris ; liquids ; mass transfer ; mathematical models ; process design ; swarms ; turbulent flow</subject><ispartof>Industrial &amp; engineering chemistry research, 2018-10, Vol.57 (40), p.13300-13311</ispartof><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a503t-44f3e1284672ed97d98413bb4e5a7be4ace480ca493b230eaf0ff9b78803a0773</citedby><cites>FETCH-LOGICAL-a503t-44f3e1284672ed97d98413bb4e5a7be4ace480ca493b230eaf0ff9b78803a0773</cites><orcidid>0000-0003-4222-0354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.8b02765$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.8b02765$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30416255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gradov, Dmitry Vladimirovich</creatorcontrib><creatorcontrib>Han, Mei</creatorcontrib><creatorcontrib>Tervasmäki, Petri</creatorcontrib><creatorcontrib>Latva-Kokko, Marko</creatorcontrib><creatorcontrib>Vaittinen, Johanna</creatorcontrib><creatorcontrib>Pihlajamäki, Arto</creatorcontrib><creatorcontrib>Koiranen, Tuomas</creatorcontrib><title>Numerical Simulation of Biomass Growth in OKTOP®9000 Reactor at Industrial Scale</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Computational fluid dynamics is a powerful method for scale-up of reactors although it is still challenging to fully embrace hydrodynamics and biological complexities. In this article, an aerobic fermentation of Pichia pastoris cells is modeled in a batch OKTOP®9000 reactor. The 800 m3 industrial scale reactor is equipped with a radial impeller, designed by Outotec Oy for gas dispersion in the draft tube reactor. Measured N p of the impeller is used in hydrodynamics validation. The resolved energy dissipation rate is compensated, and its influence on mass transfer is analyzed and discussed. Gas–liquid drag force is modified to simulate effects of liquid turbulence and bubble swarms. Resolved steady state multiphase hydrodynamics is used to simulate the fermentation process. Temporal evolution of species concentrations is compared to experimental data measured in a small copy of the reactor at lab scale (14 L). The effect of oxygenation on the P. pastoris cells cultivation is considered.</description><subject>biomass</subject><subject>energy</subject><subject>fermentation</subject><subject>hydrodynamics</subject><subject>impellers</subject><subject>Komagataella pastoris</subject><subject>liquids</subject><subject>mass transfer</subject><subject>mathematical models</subject><subject>process design</subject><subject>swarms</subject><subject>turbulent flow</subject><issn>0888-5885</issn><issn>1520-5045</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0Eokvhzgn5yIEs46_EviBBBaWiYvkoZ2vinVBXSVzsBMSf4kfwy8hqlwoOSJx8mPd9NJ6HsYcC1gKkeIqhrCOFvLYtyKY2t9hKGAmVAW1usxVYaytjrTli90q5AgBjtL7LjhRoUUtjVuz923mgHAP2_GMc5h6nmEaeOv4ipgFL4ac5fZsueRz55s3F5t3PH27B8A-EYUqZ48TPxu1cphx3hAVD99mdDvtCDw7vMfv06uXFyevqfHN6dvL8vEIDaqq07hQJaXXdSNq6ZuusFqptNRlsWtIYSFsIqJ1qpQLCDrrOtY21oBCaRh2zZ3vu9dwOtA00Thl7f53jgPm7Txj935MxXvrP6auvpXDWyAXw-ADI6ctMZfJDLIH6HkdKc_FSGFUr46T4j6iS0sm6cUsU9tGQUymZupuNBPidNL9I8ztp_iBtqTz68yc3hd-WlsCTfWBXvUpzHpfD_pv3C-a_o2I</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Gradov, Dmitry Vladimirovich</creator><creator>Han, Mei</creator><creator>Tervasmäki, Petri</creator><creator>Latva-Kokko, Marko</creator><creator>Vaittinen, Johanna</creator><creator>Pihlajamäki, Arto</creator><creator>Koiranen, Tuomas</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4222-0354</orcidid></search><sort><creationdate>20181010</creationdate><title>Numerical Simulation of Biomass Growth in OKTOP®9000 Reactor at Industrial Scale</title><author>Gradov, Dmitry Vladimirovich ; Han, Mei ; Tervasmäki, Petri ; Latva-Kokko, Marko ; Vaittinen, Johanna ; Pihlajamäki, Arto ; Koiranen, Tuomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a503t-44f3e1284672ed97d98413bb4e5a7be4ace480ca493b230eaf0ff9b78803a0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>biomass</topic><topic>energy</topic><topic>fermentation</topic><topic>hydrodynamics</topic><topic>impellers</topic><topic>Komagataella pastoris</topic><topic>liquids</topic><topic>mass transfer</topic><topic>mathematical models</topic><topic>process design</topic><topic>swarms</topic><topic>turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gradov, Dmitry Vladimirovich</creatorcontrib><creatorcontrib>Han, Mei</creatorcontrib><creatorcontrib>Tervasmäki, Petri</creatorcontrib><creatorcontrib>Latva-Kokko, Marko</creatorcontrib><creatorcontrib>Vaittinen, Johanna</creatorcontrib><creatorcontrib>Pihlajamäki, Arto</creatorcontrib><creatorcontrib>Koiranen, Tuomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gradov, Dmitry Vladimirovich</au><au>Han, Mei</au><au>Tervasmäki, Petri</au><au>Latva-Kokko, Marko</au><au>Vaittinen, Johanna</au><au>Pihlajamäki, Arto</au><au>Koiranen, Tuomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Biomass Growth in OKTOP®9000 Reactor at Industrial Scale</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2018-10-10</date><risdate>2018</risdate><volume>57</volume><issue>40</issue><spage>13300</spage><epage>13311</epage><pages>13300-13311</pages><issn>0888-5885</issn><issn>1520-5045</issn><eissn>1520-5045</eissn><abstract>Computational fluid dynamics is a powerful method for scale-up of reactors although it is still challenging to fully embrace hydrodynamics and biological complexities. In this article, an aerobic fermentation of Pichia pastoris cells is modeled in a batch OKTOP®9000 reactor. The 800 m3 industrial scale reactor is equipped with a radial impeller, designed by Outotec Oy for gas dispersion in the draft tube reactor. Measured N p of the impeller is used in hydrodynamics validation. The resolved energy dissipation rate is compensated, and its influence on mass transfer is analyzed and discussed. Gas–liquid drag force is modified to simulate effects of liquid turbulence and bubble swarms. Resolved steady state multiphase hydrodynamics is used to simulate the fermentation process. Temporal evolution of species concentrations is compared to experimental data measured in a small copy of the reactor at lab scale (14 L). The effect of oxygenation on the P. pastoris cells cultivation is considered.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30416255</pmid><doi>10.1021/acs.iecr.8b02765</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4222-0354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2018-10, Vol.57 (40), p.13300-13311
issn 0888-5885
1520-5045
1520-5045
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6219852
source ACS Publications
subjects biomass
energy
fermentation
hydrodynamics
impellers
Komagataella pastoris
liquids
mass transfer
mathematical models
process design
swarms
turbulent flow
title Numerical Simulation of Biomass Growth in OKTOP®9000 Reactor at Industrial Scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Biomass%20Growth%20in%20OKTOP%C2%AE9000%20Reactor%20at%20Industrial%20Scale&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Gradov,%20Dmitry%20Vladimirovich&rft.date=2018-10-10&rft.volume=57&rft.issue=40&rft.spage=13300&rft.epage=13311&rft.pages=13300-13311&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.8b02765&rft_dat=%3Cproquest_pubme%3E2132292679%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132292679&rft_id=info:pmid/30416255&rfr_iscdi=true