Carnitine acetyltransferase (Crat) in hunger‐sensing AgRP neurons permits adaptation to calorie restriction
ABSTRACT Hunger‐sensing agouti‐related peptide (AgRP) neurons ensure survival by adapting metabolism and behavior to low caloric environments. This adaption is accomplished by consolidating food intake, suppressing energy expenditure, and maximizing fat storage (nutrient partitioning) for energy pre...
Gespeichert in:
Veröffentlicht in: | The FASEB journal 2018-12, Vol.32 (12), p.6923-6933 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6933 |
---|---|
container_issue | 12 |
container_start_page | 6923 |
container_title | The FASEB journal |
container_volume | 32 |
creator | Reichenbach, Alex Stark, Romana Mequinion, Mathieu Lockie, Sarah H. Lemus, Moyra B. Mynatt, Randall L. Luquet, Serge Andrews, Zane B. |
description | ABSTRACT
Hunger‐sensing agouti‐related peptide (AgRP) neurons ensure survival by adapting metabolism and behavior to low caloric environments. This adaption is accomplished by consolidating food intake, suppressing energy expenditure, and maximizing fat storage (nutrient partitioning) for energy preservation. The intracellular mechanisms responsible are unknown. Here we report that AgRP carnitine acetyltransferase (Crat) knockout (KO) mice exhibited increased fatty acid utilization and greater fat loss after 9 d of calorie restriction (CR). No differences were seen in mice with ad libitum food intake. Eleven days ad libitum feeding after CR resulted in greater food intake, rebound weight gain, and adiposity in AgRP Crat KO mice compared with wild‐type controls, as KO mice act to restore pre‐CR fat mass. Collectively, this study highlights the importance of Crat in AgRP neurons to regulate nutrient partitioning and fat mass during chronically reduced caloric intake. The increased food intake, body weight gain, and adiposity in KO mice after CR also highlights the detrimental and persistent metabolic consequence of impaired substrate utilization associated with CR. This finding may have significant implications for postdieting weight management in patients with metabolic diseases.—Reichenbach, A., Stark, R., Mequinion, M., Lockie, S. H., Lemus, M. B., Mynatt, R. L., Luquet, S., Andrews, Z. B. Carnitine acetyltransferase (Crat) in hunger‐sensing AgRP neurons permits adaptation to calorie restriction. FASEB J. 32, 6923–6933 (2018). www.fasebj.org |
doi_str_mv | 10.1096/fj.201800634R |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6219829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2058508542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473R-39668cf0c28e52954244ea31895592dd71cdb73d67477a68c4de83a01d66bb543</originalsourceid><addsrcrecordid>eNp9kc1uEzEURi0EoqGwZIu8bBdT_DceW0hIISIUFAkUYG05njuJoxlPas8UZddH6DPyJDhKKYUFK0vX556rTx9CLym5oETL1832ghGqCJFcLB-hCS05KaSS5DGaEKVZISVXJ-hZSltCCCVUPkUnTGvOlFQT1M1sDH7wAbB1MOzbIdqQGog2AT6bRTucYx_wZgxriD9vbhOE5MMaT9fLLzjAGPuQ8A5i54eEbW13gx18H_DQY2fbPnrAEdIQvTuMn6MnjW0TvLh7T9H3-ftvs8ti8fnDx9l0UThR8WXBtZTKNcQxBSXTpWBCgOVU6bLUrK4r6upVxWtZiaqyGRU1KG4JraVcrUrBT9Hbo3c3rjqoHYQcqzW76Dsb96a33vz9E_zGrPtrIxnViuksOD8KNv-sXU4X5jAjnJJSSHFNM3t2dyz2V2MOazqfHLStDdCPyTBSqpKonCKjxRF1sU8pQnPvpsQc6jTN1vypM_OvHua4p3_3l4E3R-CHb2H_f5uZf33H5p8e6H8BvzausQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058508542</pqid></control><display><type>article</type><title>Carnitine acetyltransferase (Crat) in hunger‐sensing AgRP neurons permits adaptation to calorie restriction</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Alma/SFX Local Collection</source><creator>Reichenbach, Alex ; Stark, Romana ; Mequinion, Mathieu ; Lockie, Sarah H. ; Lemus, Moyra B. ; Mynatt, Randall L. ; Luquet, Serge ; Andrews, Zane B.</creator><creatorcontrib>Reichenbach, Alex ; Stark, Romana ; Mequinion, Mathieu ; Lockie, Sarah H. ; Lemus, Moyra B. ; Mynatt, Randall L. ; Luquet, Serge ; Andrews, Zane B.</creatorcontrib><description>ABSTRACT
Hunger‐sensing agouti‐related peptide (AgRP) neurons ensure survival by adapting metabolism and behavior to low caloric environments. This adaption is accomplished by consolidating food intake, suppressing energy expenditure, and maximizing fat storage (nutrient partitioning) for energy preservation. The intracellular mechanisms responsible are unknown. Here we report that AgRP carnitine acetyltransferase (Crat) knockout (KO) mice exhibited increased fatty acid utilization and greater fat loss after 9 d of calorie restriction (CR). No differences were seen in mice with ad libitum food intake. Eleven days ad libitum feeding after CR resulted in greater food intake, rebound weight gain, and adiposity in AgRP Crat KO mice compared with wild‐type controls, as KO mice act to restore pre‐CR fat mass. Collectively, this study highlights the importance of Crat in AgRP neurons to regulate nutrient partitioning and fat mass during chronically reduced caloric intake. The increased food intake, body weight gain, and adiposity in KO mice after CR also highlights the detrimental and persistent metabolic consequence of impaired substrate utilization associated with CR. This finding may have significant implications for postdieting weight management in patients with metabolic diseases.—Reichenbach, A., Stark, R., Mequinion, M., Lockie, S. H., Lemus, M. B., Mynatt, R. L., Luquet, S., Andrews, Z. B. Carnitine acetyltransferase (Crat) in hunger‐sensing AgRP neurons permits adaptation to calorie restriction. FASEB J. 32, 6923–6933 (2018). www.fasebj.org</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.201800634R</identifier><identifier>PMID: 29932868</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology</publisher><subject>body composition ; feeding behavior ; Life Sciences ; metabolic flexibility ; rebound weight gain ; RER</subject><ispartof>The FASEB journal, 2018-12, Vol.32 (12), p.6923-6933</ispartof><rights>FASEB</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>FASEB 2018 FASEB</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473R-39668cf0c28e52954244ea31895592dd71cdb73d67477a68c4de83a01d66bb543</citedby><cites>FETCH-LOGICAL-c473R-39668cf0c28e52954244ea31895592dd71cdb73d67477a68c4de83a01d66bb543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.201800634R$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.201800634R$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29932868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-03105464$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Reichenbach, Alex</creatorcontrib><creatorcontrib>Stark, Romana</creatorcontrib><creatorcontrib>Mequinion, Mathieu</creatorcontrib><creatorcontrib>Lockie, Sarah H.</creatorcontrib><creatorcontrib>Lemus, Moyra B.</creatorcontrib><creatorcontrib>Mynatt, Randall L.</creatorcontrib><creatorcontrib>Luquet, Serge</creatorcontrib><creatorcontrib>Andrews, Zane B.</creatorcontrib><title>Carnitine acetyltransferase (Crat) in hunger‐sensing AgRP neurons permits adaptation to calorie restriction</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT
Hunger‐sensing agouti‐related peptide (AgRP) neurons ensure survival by adapting metabolism and behavior to low caloric environments. This adaption is accomplished by consolidating food intake, suppressing energy expenditure, and maximizing fat storage (nutrient partitioning) for energy preservation. The intracellular mechanisms responsible are unknown. Here we report that AgRP carnitine acetyltransferase (Crat) knockout (KO) mice exhibited increased fatty acid utilization and greater fat loss after 9 d of calorie restriction (CR). No differences were seen in mice with ad libitum food intake. Eleven days ad libitum feeding after CR resulted in greater food intake, rebound weight gain, and adiposity in AgRP Crat KO mice compared with wild‐type controls, as KO mice act to restore pre‐CR fat mass. Collectively, this study highlights the importance of Crat in AgRP neurons to regulate nutrient partitioning and fat mass during chronically reduced caloric intake. The increased food intake, body weight gain, and adiposity in KO mice after CR also highlights the detrimental and persistent metabolic consequence of impaired substrate utilization associated with CR. This finding may have significant implications for postdieting weight management in patients with metabolic diseases.—Reichenbach, A., Stark, R., Mequinion, M., Lockie, S. H., Lemus, M. B., Mynatt, R. L., Luquet, S., Andrews, Z. B. Carnitine acetyltransferase (Crat) in hunger‐sensing AgRP neurons permits adaptation to calorie restriction. FASEB J. 32, 6923–6933 (2018). www.fasebj.org</description><subject>body composition</subject><subject>feeding behavior</subject><subject>Life Sciences</subject><subject>metabolic flexibility</subject><subject>rebound weight gain</subject><subject>RER</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uEzEURi0EoqGwZIu8bBdT_DceW0hIISIUFAkUYG05njuJoxlPas8UZddH6DPyJDhKKYUFK0vX556rTx9CLym5oETL1832ghGqCJFcLB-hCS05KaSS5DGaEKVZISVXJ-hZSltCCCVUPkUnTGvOlFQT1M1sDH7wAbB1MOzbIdqQGog2AT6bRTucYx_wZgxriD9vbhOE5MMaT9fLLzjAGPuQ8A5i54eEbW13gx18H_DQY2fbPnrAEdIQvTuMn6MnjW0TvLh7T9H3-ftvs8ti8fnDx9l0UThR8WXBtZTKNcQxBSXTpWBCgOVU6bLUrK4r6upVxWtZiaqyGRU1KG4JraVcrUrBT9Hbo3c3rjqoHYQcqzW76Dsb96a33vz9E_zGrPtrIxnViuksOD8KNv-sXU4X5jAjnJJSSHFNM3t2dyz2V2MOazqfHLStDdCPyTBSqpKonCKjxRF1sU8pQnPvpsQc6jTN1vypM_OvHua4p3_3l4E3R-CHb2H_f5uZf33H5p8e6H8BvzausQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Reichenbach, Alex</creator><creator>Stark, Romana</creator><creator>Mequinion, Mathieu</creator><creator>Lockie, Sarah H.</creator><creator>Lemus, Moyra B.</creator><creator>Mynatt, Randall L.</creator><creator>Luquet, Serge</creator><creator>Andrews, Zane B.</creator><general>Federation of American Societies for Experimental Biology</general><general>Federation of American Society of Experimental Biology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20181201</creationdate><title>Carnitine acetyltransferase (Crat) in hunger‐sensing AgRP neurons permits adaptation to calorie restriction</title><author>Reichenbach, Alex ; Stark, Romana ; Mequinion, Mathieu ; Lockie, Sarah H. ; Lemus, Moyra B. ; Mynatt, Randall L. ; Luquet, Serge ; Andrews, Zane B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473R-39668cf0c28e52954244ea31895592dd71cdb73d67477a68c4de83a01d66bb543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>body composition</topic><topic>feeding behavior</topic><topic>Life Sciences</topic><topic>metabolic flexibility</topic><topic>rebound weight gain</topic><topic>RER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reichenbach, Alex</creatorcontrib><creatorcontrib>Stark, Romana</creatorcontrib><creatorcontrib>Mequinion, Mathieu</creatorcontrib><creatorcontrib>Lockie, Sarah H.</creatorcontrib><creatorcontrib>Lemus, Moyra B.</creatorcontrib><creatorcontrib>Mynatt, Randall L.</creatorcontrib><creatorcontrib>Luquet, Serge</creatorcontrib><creatorcontrib>Andrews, Zane B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reichenbach, Alex</au><au>Stark, Romana</au><au>Mequinion, Mathieu</au><au>Lockie, Sarah H.</au><au>Lemus, Moyra B.</au><au>Mynatt, Randall L.</au><au>Luquet, Serge</au><au>Andrews, Zane B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carnitine acetyltransferase (Crat) in hunger‐sensing AgRP neurons permits adaptation to calorie restriction</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>32</volume><issue>12</issue><spage>6923</spage><epage>6933</epage><pages>6923-6933</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT
Hunger‐sensing agouti‐related peptide (AgRP) neurons ensure survival by adapting metabolism and behavior to low caloric environments. This adaption is accomplished by consolidating food intake, suppressing energy expenditure, and maximizing fat storage (nutrient partitioning) for energy preservation. The intracellular mechanisms responsible are unknown. Here we report that AgRP carnitine acetyltransferase (Crat) knockout (KO) mice exhibited increased fatty acid utilization and greater fat loss after 9 d of calorie restriction (CR). No differences were seen in mice with ad libitum food intake. Eleven days ad libitum feeding after CR resulted in greater food intake, rebound weight gain, and adiposity in AgRP Crat KO mice compared with wild‐type controls, as KO mice act to restore pre‐CR fat mass. Collectively, this study highlights the importance of Crat in AgRP neurons to regulate nutrient partitioning and fat mass during chronically reduced caloric intake. The increased food intake, body weight gain, and adiposity in KO mice after CR also highlights the detrimental and persistent metabolic consequence of impaired substrate utilization associated with CR. This finding may have significant implications for postdieting weight management in patients with metabolic diseases.—Reichenbach, A., Stark, R., Mequinion, M., Lockie, S. H., Lemus, M. B., Mynatt, R. L., Luquet, S., Andrews, Z. B. Carnitine acetyltransferase (Crat) in hunger‐sensing AgRP neurons permits adaptation to calorie restriction. FASEB J. 32, 6923–6933 (2018). www.fasebj.org</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>29932868</pmid><doi>10.1096/fj.201800634R</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-6638 |
ispartof | The FASEB journal, 2018-12, Vol.32 (12), p.6923-6933 |
issn | 0892-6638 1530-6860 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6219829 |
source | Wiley Online Library - AutoHoldings Journals; Alma/SFX Local Collection |
subjects | body composition feeding behavior Life Sciences metabolic flexibility rebound weight gain RER |
title | Carnitine acetyltransferase (Crat) in hunger‐sensing AgRP neurons permits adaptation to calorie restriction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carnitine%20acetyltransferase%20(Crat)%20in%20hunger%E2%80%90sensing%20AgRP%20neurons%20permits%20adaptation%20to%20calorie%20restriction&rft.jtitle=The%20FASEB%20journal&rft.au=Reichenbach,%20Alex&rft.date=2018-12-01&rft.volume=32&rft.issue=12&rft.spage=6923&rft.epage=6933&rft.pages=6923-6933&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.201800634R&rft_dat=%3Cproquest_pubme%3E2058508542%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2058508542&rft_id=info:pmid/29932868&rfr_iscdi=true |