Revisiting the structure of low‐Mach number, low‐beta, quasi‐perpendicular shocks

A study of the structure of 145 low‐Mach number (M≤3), low‐beta (β≤1), quasi‐perpendicular interplanetary collisionless shock waves observed by the Wind spacecraft has provided strong evidence that these shocks have large‐amplitude whistler precursors. The common occurrence and large amplitudes of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2017-09, Vol.122 (9), p.9115-9133
Hauptverfasser: Wilson III, L. B., Koval, A., Szabo, A., Stevens, M. L., Kasper, J. C., Cattell, C. A., Krasnoselskikh, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9133
container_issue 9
container_start_page 9115
container_title Journal of geophysical research. Space physics
container_volume 122
creator Wilson III, L. B.
Koval, A.
Szabo, A.
Stevens, M. L.
Kasper, J. C.
Cattell, C. A.
Krasnoselskikh, V. V.
description A study of the structure of 145 low‐Mach number (M≤3), low‐beta (β≤1), quasi‐perpendicular interplanetary collisionless shock waves observed by the Wind spacecraft has provided strong evidence that these shocks have large‐amplitude whistler precursors. The common occurrence and large amplitudes of the precursors raise doubts about the standard assumption that such shocks can be classified as laminar structures. This directly contradicts standard models. In 113 of the 145 shocks (∼78%), we observe clear evidence of magnetosonic‐whistler precursor fluctuations with frequencies ∼0.1–7 Hz. We find no dependence on the upstream plasma beta, or any other shock parameter, for the presence or absence of precursors. The majority (∼66%) of the precursors propagate at ≤45° with respect to the upstream average magnetic field and most (∼87%) propagate ≥30° from the shock normal vector. Further, most (∼79%) of the waves propagate at least 20° from the coplanarity plane. The peak‐to‐peak wave amplitudes (δBpk‐pk) are large with a range of maximum values for the 113 precursors of ∼0.4–13 nT with an average of ∼2 nT. When we normalize the wave amplitudes to the upstream averaged magnetic field and the shock ramp amplitude, we find average values of ∼40% and ∼220%, respectively. Plain Language Summary We present new results that suggest that the magnetic structure of collisionless shock waves is not a smooth, step‐like transition but rather riddled with large‐amplitude waves as large or larger than the shock itself. These results have implications for the dynamics of weak shocks from propagation and evolution to particle acceleration and heating. Key Points Low‐Mach number, low‐beta, quasi‐perpendicular shocks are not laminar, step‐like, magnetic structures Whistler precursor amplitudes are on average 50% and 80% of the upstream average magnetic field and shock ramp amplitude, respectively Whistler precursors propagate obliquely to the upstream magnetic field, shock normal vector, and coplanarity plane
doi_str_mv 10.1002/2017JA024352
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6219398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1953336514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5576-b3cd6ec2fe6f8141a0d1f1cbe3c84e4523092d7806553312f6e551e2935843b13</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEolXpjTOKxAWhXbA9sWNfkFYVtFSLkCoQR8txJo1LNt7a8Va98Qh9xj4JrnZblR7wZezx539m_BfFa0o-UELYR0ZofbogrALOnhX7jAo1VxVhz-_3IMlecRjjBclL5hTlL4s9IBUlkpP94tcZblx0kxvPy6nHMk4h2SkFLH1XDv7q9s_NN2P7ckyrBsNsl2pwMrPyMpno8mmNYY1j62waTChj7-3v-Kp40Zkh4uEuHhQ_v3z-cXQyX34__nq0WM4t57WYN2BbgZZ1KDpJK2pISztqGwQrK6w4A6JYW0siOAegrBPIOUWmgMsKGgoHxaet7jo1K2wtjlMwg14HtzLhWnvj9L83o-v1ud9owagCJbPA-61A_-TZyWKp3RiTJsCFJKre3FV7t6sW_GXCOOmVixaHwYzoU9SMAmNCqppl9O0T9MKnMOa_0FTlWUBwWmVqtqVs8DEG7B5aoETfOawfO5zxN4-nfYDv_cwAbIErN-D1f8X06fHZgkMNAv4C6kmw-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953336514</pqid></control><display><type>article</type><title>Revisiting the structure of low‐Mach number, low‐beta, quasi‐perpendicular shocks</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Wilson III, L. B. ; Koval, A. ; Szabo, A. ; Stevens, M. L. ; Kasper, J. C. ; Cattell, C. A. ; Krasnoselskikh, V. V.</creator><creatorcontrib>Wilson III, L. B. ; Koval, A. ; Szabo, A. ; Stevens, M. L. ; Kasper, J. C. ; Cattell, C. A. ; Krasnoselskikh, V. V.</creatorcontrib><description>A study of the structure of 145 low‐Mach number (M≤3), low‐beta (β≤1), quasi‐perpendicular interplanetary collisionless shock waves observed by the Wind spacecraft has provided strong evidence that these shocks have large‐amplitude whistler precursors. The common occurrence and large amplitudes of the precursors raise doubts about the standard assumption that such shocks can be classified as laminar structures. This directly contradicts standard models. In 113 of the 145 shocks (∼78%), we observe clear evidence of magnetosonic‐whistler precursor fluctuations with frequencies ∼0.1–7 Hz. We find no dependence on the upstream plasma beta, or any other shock parameter, for the presence or absence of precursors. The majority (∼66%) of the precursors propagate at ≤45° with respect to the upstream average magnetic field and most (∼87%) propagate ≥30° from the shock normal vector. Further, most (∼79%) of the waves propagate at least 20° from the coplanarity plane. The peak‐to‐peak wave amplitudes (δBpk‐pk) are large with a range of maximum values for the 113 precursors of ∼0.4–13 nT with an average of ∼2 nT. When we normalize the wave amplitudes to the upstream averaged magnetic field and the shock ramp amplitude, we find average values of ∼40% and ∼220%, respectively. Plain Language Summary We present new results that suggest that the magnetic structure of collisionless shock waves is not a smooth, step‐like transition but rather riddled with large‐amplitude waves as large or larger than the shock itself. These results have implications for the dynamics of weak shocks from propagation and evolution to particle acceleration and heating. Key Points Low‐Mach number, low‐beta, quasi‐perpendicular shocks are not laminar, step‐like, magnetic structures Whistler precursor amplitudes are on average 50% and 80% of the upstream average magnetic field and shock ramp amplitude, respectively Whistler precursors propagate obliquely to the upstream magnetic field, shock normal vector, and coplanarity plane</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2017JA024352</identifier><identifier>PMID: 30410850</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Amplitudes ; Beta rays ; collisionless shock waves ; Coplanarity ; Evolution ; interplanetary shocks ; Mach number ; Magnetic fields ; Magnetic structure ; nonlinear waves ; Particle acceleration ; Sciences of the Universe ; Shock waves ; Spacecraft ; Upstream ; wave analysis ; whistler mode waves ; Wind spacecraft</subject><ispartof>Journal of geophysical research. Space physics, 2017-09, Vol.122 (9), p.9115-9133</ispartof><rights>Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA.</rights><rights>2017. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5576-b3cd6ec2fe6f8141a0d1f1cbe3c84e4523092d7806553312f6e551e2935843b13</citedby><cites>FETCH-LOGICAL-c5576-b3cd6ec2fe6f8141a0d1f1cbe3c84e4523092d7806553312f6e551e2935843b13</cites><orcidid>0000-0002-7728-0085 ; 0000-0002-4313-1970 ; 0000-0002-3805-320X ; 0000-0002-7077-930X ; 0000-0002-6809-6219 ; 0000-0003-3255-9071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JA024352$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JA024352$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,1434,27929,27930,45579,45580,46414,46838</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30410850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-03568097$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson III, L. B.</creatorcontrib><creatorcontrib>Koval, A.</creatorcontrib><creatorcontrib>Szabo, A.</creatorcontrib><creatorcontrib>Stevens, M. L.</creatorcontrib><creatorcontrib>Kasper, J. C.</creatorcontrib><creatorcontrib>Cattell, C. A.</creatorcontrib><creatorcontrib>Krasnoselskikh, V. V.</creatorcontrib><title>Revisiting the structure of low‐Mach number, low‐beta, quasi‐perpendicular shocks</title><title>Journal of geophysical research. Space physics</title><addtitle>J Geophys Res Space Phys</addtitle><description>A study of the structure of 145 low‐Mach number (M≤3), low‐beta (β≤1), quasi‐perpendicular interplanetary collisionless shock waves observed by the Wind spacecraft has provided strong evidence that these shocks have large‐amplitude whistler precursors. The common occurrence and large amplitudes of the precursors raise doubts about the standard assumption that such shocks can be classified as laminar structures. This directly contradicts standard models. In 113 of the 145 shocks (∼78%), we observe clear evidence of magnetosonic‐whistler precursor fluctuations with frequencies ∼0.1–7 Hz. We find no dependence on the upstream plasma beta, or any other shock parameter, for the presence or absence of precursors. The majority (∼66%) of the precursors propagate at ≤45° with respect to the upstream average magnetic field and most (∼87%) propagate ≥30° from the shock normal vector. Further, most (∼79%) of the waves propagate at least 20° from the coplanarity plane. The peak‐to‐peak wave amplitudes (δBpk‐pk) are large with a range of maximum values for the 113 precursors of ∼0.4–13 nT with an average of ∼2 nT. When we normalize the wave amplitudes to the upstream averaged magnetic field and the shock ramp amplitude, we find average values of ∼40% and ∼220%, respectively. Plain Language Summary We present new results that suggest that the magnetic structure of collisionless shock waves is not a smooth, step‐like transition but rather riddled with large‐amplitude waves as large or larger than the shock itself. These results have implications for the dynamics of weak shocks from propagation and evolution to particle acceleration and heating. Key Points Low‐Mach number, low‐beta, quasi‐perpendicular shocks are not laminar, step‐like, magnetic structures Whistler precursor amplitudes are on average 50% and 80% of the upstream average magnetic field and shock ramp amplitude, respectively Whistler precursors propagate obliquely to the upstream magnetic field, shock normal vector, and coplanarity plane</description><subject>Amplitudes</subject><subject>Beta rays</subject><subject>collisionless shock waves</subject><subject>Coplanarity</subject><subject>Evolution</subject><subject>interplanetary shocks</subject><subject>Mach number</subject><subject>Magnetic fields</subject><subject>Magnetic structure</subject><subject>nonlinear waves</subject><subject>Particle acceleration</subject><subject>Sciences of the Universe</subject><subject>Shock waves</subject><subject>Spacecraft</subject><subject>Upstream</subject><subject>wave analysis</subject><subject>whistler mode waves</subject><subject>Wind spacecraft</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhiMEolXpjTOKxAWhXbA9sWNfkFYVtFSLkCoQR8txJo1LNt7a8Va98Qh9xj4JrnZblR7wZezx539m_BfFa0o-UELYR0ZofbogrALOnhX7jAo1VxVhz-_3IMlecRjjBclL5hTlL4s9IBUlkpP94tcZblx0kxvPy6nHMk4h2SkFLH1XDv7q9s_NN2P7ckyrBsNsl2pwMrPyMpno8mmNYY1j62waTChj7-3v-Kp40Zkh4uEuHhQ_v3z-cXQyX34__nq0WM4t57WYN2BbgZZ1KDpJK2pISztqGwQrK6w4A6JYW0siOAegrBPIOUWmgMsKGgoHxaet7jo1K2wtjlMwg14HtzLhWnvj9L83o-v1ud9owagCJbPA-61A_-TZyWKp3RiTJsCFJKre3FV7t6sW_GXCOOmVixaHwYzoU9SMAmNCqppl9O0T9MKnMOa_0FTlWUBwWmVqtqVs8DEG7B5aoETfOawfO5zxN4-nfYDv_cwAbIErN-D1f8X06fHZgkMNAv4C6kmw-w</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Wilson III, L. B.</creator><creator>Koval, A.</creator><creator>Szabo, A.</creator><creator>Stevens, M. L.</creator><creator>Kasper, J. C.</creator><creator>Cattell, C. A.</creator><creator>Krasnoselskikh, V. V.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union/Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7728-0085</orcidid><orcidid>https://orcid.org/0000-0002-4313-1970</orcidid><orcidid>https://orcid.org/0000-0002-3805-320X</orcidid><orcidid>https://orcid.org/0000-0002-7077-930X</orcidid><orcidid>https://orcid.org/0000-0002-6809-6219</orcidid><orcidid>https://orcid.org/0000-0003-3255-9071</orcidid></search><sort><creationdate>201709</creationdate><title>Revisiting the structure of low‐Mach number, low‐beta, quasi‐perpendicular shocks</title><author>Wilson III, L. B. ; Koval, A. ; Szabo, A. ; Stevens, M. L. ; Kasper, J. C. ; Cattell, C. A. ; Krasnoselskikh, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5576-b3cd6ec2fe6f8141a0d1f1cbe3c84e4523092d7806553312f6e551e2935843b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amplitudes</topic><topic>Beta rays</topic><topic>collisionless shock waves</topic><topic>Coplanarity</topic><topic>Evolution</topic><topic>interplanetary shocks</topic><topic>Mach number</topic><topic>Magnetic fields</topic><topic>Magnetic structure</topic><topic>nonlinear waves</topic><topic>Particle acceleration</topic><topic>Sciences of the Universe</topic><topic>Shock waves</topic><topic>Spacecraft</topic><topic>Upstream</topic><topic>wave analysis</topic><topic>whistler mode waves</topic><topic>Wind spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson III, L. B.</creatorcontrib><creatorcontrib>Koval, A.</creatorcontrib><creatorcontrib>Szabo, A.</creatorcontrib><creatorcontrib>Stevens, M. L.</creatorcontrib><creatorcontrib>Kasper, J. C.</creatorcontrib><creatorcontrib>Cattell, C. A.</creatorcontrib><creatorcontrib>Krasnoselskikh, V. V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson III, L. B.</au><au>Koval, A.</au><au>Szabo, A.</au><au>Stevens, M. L.</au><au>Kasper, J. C.</au><au>Cattell, C. A.</au><au>Krasnoselskikh, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the structure of low‐Mach number, low‐beta, quasi‐perpendicular shocks</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J Geophys Res Space Phys</addtitle><date>2017-09</date><risdate>2017</risdate><volume>122</volume><issue>9</issue><spage>9115</spage><epage>9133</epage><pages>9115-9133</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>A study of the structure of 145 low‐Mach number (M≤3), low‐beta (β≤1), quasi‐perpendicular interplanetary collisionless shock waves observed by the Wind spacecraft has provided strong evidence that these shocks have large‐amplitude whistler precursors. The common occurrence and large amplitudes of the precursors raise doubts about the standard assumption that such shocks can be classified as laminar structures. This directly contradicts standard models. In 113 of the 145 shocks (∼78%), we observe clear evidence of magnetosonic‐whistler precursor fluctuations with frequencies ∼0.1–7 Hz. We find no dependence on the upstream plasma beta, or any other shock parameter, for the presence or absence of precursors. The majority (∼66%) of the precursors propagate at ≤45° with respect to the upstream average magnetic field and most (∼87%) propagate ≥30° from the shock normal vector. Further, most (∼79%) of the waves propagate at least 20° from the coplanarity plane. The peak‐to‐peak wave amplitudes (δBpk‐pk) are large with a range of maximum values for the 113 precursors of ∼0.4–13 nT with an average of ∼2 nT. When we normalize the wave amplitudes to the upstream averaged magnetic field and the shock ramp amplitude, we find average values of ∼40% and ∼220%, respectively. Plain Language Summary We present new results that suggest that the magnetic structure of collisionless shock waves is not a smooth, step‐like transition but rather riddled with large‐amplitude waves as large or larger than the shock itself. These results have implications for the dynamics of weak shocks from propagation and evolution to particle acceleration and heating. Key Points Low‐Mach number, low‐beta, quasi‐perpendicular shocks are not laminar, step‐like, magnetic structures Whistler precursor amplitudes are on average 50% and 80% of the upstream average magnetic field and shock ramp amplitude, respectively Whistler precursors propagate obliquely to the upstream magnetic field, shock normal vector, and coplanarity plane</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>30410850</pmid><doi>10.1002/2017JA024352</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7728-0085</orcidid><orcidid>https://orcid.org/0000-0002-4313-1970</orcidid><orcidid>https://orcid.org/0000-0002-3805-320X</orcidid><orcidid>https://orcid.org/0000-0002-7077-930X</orcidid><orcidid>https://orcid.org/0000-0002-6809-6219</orcidid><orcidid>https://orcid.org/0000-0003-3255-9071</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2017-09, Vol.122 (9), p.9115-9133
issn 2169-9380
2169-9402
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6219398
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection)
subjects Amplitudes
Beta rays
collisionless shock waves
Coplanarity
Evolution
interplanetary shocks
Mach number
Magnetic fields
Magnetic structure
nonlinear waves
Particle acceleration
Sciences of the Universe
Shock waves
Spacecraft
Upstream
wave analysis
whistler mode waves
Wind spacecraft
title Revisiting the structure of low‐Mach number, low‐beta, quasi‐perpendicular shocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20structure%20of%20low%E2%80%90Mach%20number,%20low%E2%80%90beta,%20quasi%E2%80%90perpendicular%20shocks&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Wilson%C2%A0III,%20L.%20B.&rft.date=2017-09&rft.volume=122&rft.issue=9&rft.spage=9115&rft.epage=9133&rft.pages=9115-9133&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2017JA024352&rft_dat=%3Cproquest_pubme%3E1953336514%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1953336514&rft_id=info:pmid/30410850&rfr_iscdi=true