Osteoblast migration in vertebrate bone

ABSTRACT Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological reviews of the Cambridge Philosophical Society 2018-02, Vol.93 (1), p.350-363
Hauptverfasser: Thiel, Antonia, Reumann, Marie K., Boskey, Adele, Wischmann, Johannes, von Eisenhart‐Rothe, Rüdiger, Mayer‐Kuckuk, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 1
container_start_page 350
container_title Biological reviews of the Cambridge Philosophical Society
container_volume 93
creator Thiel, Antonia
Reumann, Marie K.
Boskey, Adele
Wischmann, Johannes
von Eisenhart‐Rothe, Rüdiger
Mayer‐Kuckuk, Philipp
description ABSTRACT Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three‐dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.
doi_str_mv 10.1111/brv.12345
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6218945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987604229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5095-fad2724a920786c9badfaae3f730b6050b4a61299d2fba1e8e584b6f71937f903</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk4v_ANS8EK96Javps2NoMMvEAai4l1I2nR2tM1M2sn-vdk6hwrm5iQnD09OXgCOERwiv0bKLoYIExrtgD6ijIcoid5213saxpygHjhwbgahbzCyD3o4YQRRivvgbOIabVQpXRNUxdTKpjB1UNTBQttGK3_WgTK1PgR7uSydPtrUAXi5vXke34ePk7uH8dVjmEaQR2EuMxxjKjmGccJSrmSWS6lJHhOoGIygopIhzHmGcyWRTnSUUMXyGHES5xySAbjsvPNWVTpLdd1YWYq5LSppl8LIQvy-qYt3MTULwTBKOI284HwjsOaj1a4RVeFSXZay1qZ1AnGEYoRptHrr9A86M62t_fc8lcQMUoy5py46KrXGOavz7TAIilX8wscv1vF79uTn9FvyO28PjDrgsyj18n-TuH567ZRfHDqOTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987604229</pqid></control><display><type>article</type><title>Osteoblast migration in vertebrate bone</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Thiel, Antonia ; Reumann, Marie K. ; Boskey, Adele ; Wischmann, Johannes ; von Eisenhart‐Rothe, Rüdiger ; Mayer‐Kuckuk, Philipp</creator><creatorcontrib>Thiel, Antonia ; Reumann, Marie K. ; Boskey, Adele ; Wischmann, Johannes ; von Eisenhart‐Rothe, Rüdiger ; Mayer‐Kuckuk, Philipp</creatorcontrib><description>ABSTRACT Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three‐dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.</description><identifier>ISSN: 1464-7931</identifier><identifier>EISSN: 1469-185X</identifier><identifier>DOI: 10.1111/brv.12345</identifier><identifier>PMID: 28631442</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adhesion ; Biocompatibility ; Biomedical materials ; bone ; Bone diseases ; Bone growth ; Bone remodeling ; Cell adhesion ; Cell adhesion &amp; migration ; Cell migration ; Chemotactic factors ; Chemotaxis ; Cues ; Endothelial cells ; Fluid dynamics ; Fluid flow ; Glial stem cells ; In vivo methods and tests ; Mechanical stimuli ; mineralized surfaces ; Navigation ; Osteoblasts ; Osteoclasts ; Osteogenesis ; Osteoporosis ; Osteoprogenitor cells ; Progeny ; Receptors ; Stem cells ; Vertebrates</subject><ispartof>Biological reviews of the Cambridge Philosophical Society, 2018-02, Vol.93 (1), p.350-363</ispartof><rights>2017 Cambridge Philosophical Society</rights><rights>2017 Cambridge Philosophical Society.</rights><rights>Biological Reviews © 2018 Cambridge Philosophical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5095-fad2724a920786c9badfaae3f730b6050b4a61299d2fba1e8e584b6f71937f903</citedby><cites>FETCH-LOGICAL-c5095-fad2724a920786c9badfaae3f730b6050b4a61299d2fba1e8e584b6f71937f903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbrv.12345$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbrv.12345$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28631442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thiel, Antonia</creatorcontrib><creatorcontrib>Reumann, Marie K.</creatorcontrib><creatorcontrib>Boskey, Adele</creatorcontrib><creatorcontrib>Wischmann, Johannes</creatorcontrib><creatorcontrib>von Eisenhart‐Rothe, Rüdiger</creatorcontrib><creatorcontrib>Mayer‐Kuckuk, Philipp</creatorcontrib><title>Osteoblast migration in vertebrate bone</title><title>Biological reviews of the Cambridge Philosophical Society</title><addtitle>Biol Rev Camb Philos Soc</addtitle><description>ABSTRACT Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three‐dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.</description><subject>Adhesion</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>bone</subject><subject>Bone diseases</subject><subject>Bone growth</subject><subject>Bone remodeling</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell migration</subject><subject>Chemotactic factors</subject><subject>Chemotaxis</subject><subject>Cues</subject><subject>Endothelial cells</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Glial stem cells</subject><subject>In vivo methods and tests</subject><subject>Mechanical stimuli</subject><subject>mineralized surfaces</subject><subject>Navigation</subject><subject>Osteoblasts</subject><subject>Osteoclasts</subject><subject>Osteogenesis</subject><subject>Osteoporosis</subject><subject>Osteoprogenitor cells</subject><subject>Progeny</subject><subject>Receptors</subject><subject>Stem cells</subject><subject>Vertebrates</subject><issn>1464-7931</issn><issn>1469-185X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMobk4v_ANS8EK96Javps2NoMMvEAai4l1I2nR2tM1M2sn-vdk6hwrm5iQnD09OXgCOERwiv0bKLoYIExrtgD6ijIcoid5213saxpygHjhwbgahbzCyD3o4YQRRivvgbOIabVQpXRNUxdTKpjB1UNTBQttGK3_WgTK1PgR7uSydPtrUAXi5vXke34ePk7uH8dVjmEaQR2EuMxxjKjmGccJSrmSWS6lJHhOoGIygopIhzHmGcyWRTnSUUMXyGHES5xySAbjsvPNWVTpLdd1YWYq5LSppl8LIQvy-qYt3MTULwTBKOI284HwjsOaj1a4RVeFSXZay1qZ1AnGEYoRptHrr9A86M62t_fc8lcQMUoy5py46KrXGOavz7TAIilX8wscv1vF79uTn9FvyO28PjDrgsyj18n-TuH567ZRfHDqOTQ</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Thiel, Antonia</creator><creator>Reumann, Marie K.</creator><creator>Boskey, Adele</creator><creator>Wischmann, Johannes</creator><creator>von Eisenhart‐Rothe, Rüdiger</creator><creator>Mayer‐Kuckuk, Philipp</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201802</creationdate><title>Osteoblast migration in vertebrate bone</title><author>Thiel, Antonia ; Reumann, Marie K. ; Boskey, Adele ; Wischmann, Johannes ; von Eisenhart‐Rothe, Rüdiger ; Mayer‐Kuckuk, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5095-fad2724a920786c9badfaae3f730b6050b4a61299d2fba1e8e584b6f71937f903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adhesion</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>bone</topic><topic>Bone diseases</topic><topic>Bone growth</topic><topic>Bone remodeling</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell migration</topic><topic>Chemotactic factors</topic><topic>Chemotaxis</topic><topic>Cues</topic><topic>Endothelial cells</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Glial stem cells</topic><topic>In vivo methods and tests</topic><topic>Mechanical stimuli</topic><topic>mineralized surfaces</topic><topic>Navigation</topic><topic>Osteoblasts</topic><topic>Osteoclasts</topic><topic>Osteogenesis</topic><topic>Osteoporosis</topic><topic>Osteoprogenitor cells</topic><topic>Progeny</topic><topic>Receptors</topic><topic>Stem cells</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiel, Antonia</creatorcontrib><creatorcontrib>Reumann, Marie K.</creatorcontrib><creatorcontrib>Boskey, Adele</creatorcontrib><creatorcontrib>Wischmann, Johannes</creatorcontrib><creatorcontrib>von Eisenhart‐Rothe, Rüdiger</creatorcontrib><creatorcontrib>Mayer‐Kuckuk, Philipp</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biological reviews of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiel, Antonia</au><au>Reumann, Marie K.</au><au>Boskey, Adele</au><au>Wischmann, Johannes</au><au>von Eisenhart‐Rothe, Rüdiger</au><au>Mayer‐Kuckuk, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteoblast migration in vertebrate bone</atitle><jtitle>Biological reviews of the Cambridge Philosophical Society</jtitle><addtitle>Biol Rev Camb Philos Soc</addtitle><date>2018-02</date><risdate>2018</risdate><volume>93</volume><issue>1</issue><spage>350</spage><epage>363</epage><pages>350-363</pages><issn>1464-7931</issn><eissn>1469-185X</eissn><abstract>ABSTRACT Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three‐dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>28631442</pmid><doi>10.1111/brv.12345</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1464-7931
ispartof Biological reviews of the Cambridge Philosophical Society, 2018-02, Vol.93 (1), p.350-363
issn 1464-7931
1469-185X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6218945
source Wiley Online Library Journals Frontfile Complete
subjects Adhesion
Biocompatibility
Biomedical materials
bone
Bone diseases
Bone growth
Bone remodeling
Cell adhesion
Cell adhesion & migration
Cell migration
Chemotactic factors
Chemotaxis
Cues
Endothelial cells
Fluid dynamics
Fluid flow
Glial stem cells
In vivo methods and tests
Mechanical stimuli
mineralized surfaces
Navigation
Osteoblasts
Osteoclasts
Osteogenesis
Osteoporosis
Osteoprogenitor cells
Progeny
Receptors
Stem cells
Vertebrates
title Osteoblast migration in vertebrate bone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteoblast%20migration%20in%20vertebrate%20bone&rft.jtitle=Biological%20reviews%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=Thiel,%20Antonia&rft.date=2018-02&rft.volume=93&rft.issue=1&rft.spage=350&rft.epage=363&rft.pages=350-363&rft.issn=1464-7931&rft.eissn=1469-185X&rft_id=info:doi/10.1111/brv.12345&rft_dat=%3Cproquest_pubme%3E1987604229%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987604229&rft_id=info:pmid/28631442&rfr_iscdi=true