Osteoblast migration in vertebrate bone
ABSTRACT Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within t...
Gespeichert in:
Veröffentlicht in: | Biological reviews of the Cambridge Philosophical Society 2018-02, Vol.93 (1), p.350-363 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 363 |
---|---|
container_issue | 1 |
container_start_page | 350 |
container_title | Biological reviews of the Cambridge Philosophical Society |
container_volume | 93 |
creator | Thiel, Antonia Reumann, Marie K. Boskey, Adele Wischmann, Johannes von Eisenhart‐Rothe, Rüdiger Mayer‐Kuckuk, Philipp |
description | ABSTRACT
Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three‐dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis. |
doi_str_mv | 10.1111/brv.12345 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6218945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1987604229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5095-fad2724a920786c9badfaae3f730b6050b4a61299d2fba1e8e584b6f71937f903</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk4v_ANS8EK96Javps2NoMMvEAai4l1I2nR2tM1M2sn-vdk6hwrm5iQnD09OXgCOERwiv0bKLoYIExrtgD6ijIcoid5213saxpygHjhwbgahbzCyD3o4YQRRivvgbOIabVQpXRNUxdTKpjB1UNTBQttGK3_WgTK1PgR7uSydPtrUAXi5vXke34ePk7uH8dVjmEaQR2EuMxxjKjmGccJSrmSWS6lJHhOoGIygopIhzHmGcyWRTnSUUMXyGHES5xySAbjsvPNWVTpLdd1YWYq5LSppl8LIQvy-qYt3MTULwTBKOI284HwjsOaj1a4RVeFSXZay1qZ1AnGEYoRptHrr9A86M62t_fc8lcQMUoy5py46KrXGOavz7TAIilX8wscv1vF79uTn9FvyO28PjDrgsyj18n-TuH567ZRfHDqOTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987604229</pqid></control><display><type>article</type><title>Osteoblast migration in vertebrate bone</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Thiel, Antonia ; Reumann, Marie K. ; Boskey, Adele ; Wischmann, Johannes ; von Eisenhart‐Rothe, Rüdiger ; Mayer‐Kuckuk, Philipp</creator><creatorcontrib>Thiel, Antonia ; Reumann, Marie K. ; Boskey, Adele ; Wischmann, Johannes ; von Eisenhart‐Rothe, Rüdiger ; Mayer‐Kuckuk, Philipp</creatorcontrib><description>ABSTRACT
Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three‐dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.</description><identifier>ISSN: 1464-7931</identifier><identifier>EISSN: 1469-185X</identifier><identifier>DOI: 10.1111/brv.12345</identifier><identifier>PMID: 28631442</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adhesion ; Biocompatibility ; Biomedical materials ; bone ; Bone diseases ; Bone growth ; Bone remodeling ; Cell adhesion ; Cell adhesion & migration ; Cell migration ; Chemotactic factors ; Chemotaxis ; Cues ; Endothelial cells ; Fluid dynamics ; Fluid flow ; Glial stem cells ; In vivo methods and tests ; Mechanical stimuli ; mineralized surfaces ; Navigation ; Osteoblasts ; Osteoclasts ; Osteogenesis ; Osteoporosis ; Osteoprogenitor cells ; Progeny ; Receptors ; Stem cells ; Vertebrates</subject><ispartof>Biological reviews of the Cambridge Philosophical Society, 2018-02, Vol.93 (1), p.350-363</ispartof><rights>2017 Cambridge Philosophical Society</rights><rights>2017 Cambridge Philosophical Society.</rights><rights>Biological Reviews © 2018 Cambridge Philosophical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5095-fad2724a920786c9badfaae3f730b6050b4a61299d2fba1e8e584b6f71937f903</citedby><cites>FETCH-LOGICAL-c5095-fad2724a920786c9badfaae3f730b6050b4a61299d2fba1e8e584b6f71937f903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbrv.12345$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbrv.12345$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28631442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thiel, Antonia</creatorcontrib><creatorcontrib>Reumann, Marie K.</creatorcontrib><creatorcontrib>Boskey, Adele</creatorcontrib><creatorcontrib>Wischmann, Johannes</creatorcontrib><creatorcontrib>von Eisenhart‐Rothe, Rüdiger</creatorcontrib><creatorcontrib>Mayer‐Kuckuk, Philipp</creatorcontrib><title>Osteoblast migration in vertebrate bone</title><title>Biological reviews of the Cambridge Philosophical Society</title><addtitle>Biol Rev Camb Philos Soc</addtitle><description>ABSTRACT
Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three‐dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.</description><subject>Adhesion</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>bone</subject><subject>Bone diseases</subject><subject>Bone growth</subject><subject>Bone remodeling</subject><subject>Cell adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cell migration</subject><subject>Chemotactic factors</subject><subject>Chemotaxis</subject><subject>Cues</subject><subject>Endothelial cells</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Glial stem cells</subject><subject>In vivo methods and tests</subject><subject>Mechanical stimuli</subject><subject>mineralized surfaces</subject><subject>Navigation</subject><subject>Osteoblasts</subject><subject>Osteoclasts</subject><subject>Osteogenesis</subject><subject>Osteoporosis</subject><subject>Osteoprogenitor cells</subject><subject>Progeny</subject><subject>Receptors</subject><subject>Stem cells</subject><subject>Vertebrates</subject><issn>1464-7931</issn><issn>1469-185X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMobk4v_ANS8EK96Javps2NoMMvEAai4l1I2nR2tM1M2sn-vdk6hwrm5iQnD09OXgCOERwiv0bKLoYIExrtgD6ijIcoid5213saxpygHjhwbgahbzCyD3o4YQRRivvgbOIabVQpXRNUxdTKpjB1UNTBQttGK3_WgTK1PgR7uSydPtrUAXi5vXke34ePk7uH8dVjmEaQR2EuMxxjKjmGccJSrmSWS6lJHhOoGIygopIhzHmGcyWRTnSUUMXyGHES5xySAbjsvPNWVTpLdd1YWYq5LSppl8LIQvy-qYt3MTULwTBKOI284HwjsOaj1a4RVeFSXZay1qZ1AnGEYoRptHrr9A86M62t_fc8lcQMUoy5py46KrXGOavz7TAIilX8wscv1vF79uTn9FvyO28PjDrgsyj18n-TuH567ZRfHDqOTQ</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Thiel, Antonia</creator><creator>Reumann, Marie K.</creator><creator>Boskey, Adele</creator><creator>Wischmann, Johannes</creator><creator>von Eisenhart‐Rothe, Rüdiger</creator><creator>Mayer‐Kuckuk, Philipp</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201802</creationdate><title>Osteoblast migration in vertebrate bone</title><author>Thiel, Antonia ; Reumann, Marie K. ; Boskey, Adele ; Wischmann, Johannes ; von Eisenhart‐Rothe, Rüdiger ; Mayer‐Kuckuk, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5095-fad2724a920786c9badfaae3f730b6050b4a61299d2fba1e8e584b6f71937f903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adhesion</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>bone</topic><topic>Bone diseases</topic><topic>Bone growth</topic><topic>Bone remodeling</topic><topic>Cell adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cell migration</topic><topic>Chemotactic factors</topic><topic>Chemotaxis</topic><topic>Cues</topic><topic>Endothelial cells</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Glial stem cells</topic><topic>In vivo methods and tests</topic><topic>Mechanical stimuli</topic><topic>mineralized surfaces</topic><topic>Navigation</topic><topic>Osteoblasts</topic><topic>Osteoclasts</topic><topic>Osteogenesis</topic><topic>Osteoporosis</topic><topic>Osteoprogenitor cells</topic><topic>Progeny</topic><topic>Receptors</topic><topic>Stem cells</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiel, Antonia</creatorcontrib><creatorcontrib>Reumann, Marie K.</creatorcontrib><creatorcontrib>Boskey, Adele</creatorcontrib><creatorcontrib>Wischmann, Johannes</creatorcontrib><creatorcontrib>von Eisenhart‐Rothe, Rüdiger</creatorcontrib><creatorcontrib>Mayer‐Kuckuk, Philipp</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biological reviews of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiel, Antonia</au><au>Reumann, Marie K.</au><au>Boskey, Adele</au><au>Wischmann, Johannes</au><au>von Eisenhart‐Rothe, Rüdiger</au><au>Mayer‐Kuckuk, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteoblast migration in vertebrate bone</atitle><jtitle>Biological reviews of the Cambridge Philosophical Society</jtitle><addtitle>Biol Rev Camb Philos Soc</addtitle><date>2018-02</date><risdate>2018</risdate><volume>93</volume><issue>1</issue><spage>350</spage><epage>363</epage><pages>350-363</pages><issn>1464-7931</issn><eissn>1469-185X</eissn><abstract>ABSTRACT
Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three‐dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>28631442</pmid><doi>10.1111/brv.12345</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-7931 |
ispartof | Biological reviews of the Cambridge Philosophical Society, 2018-02, Vol.93 (1), p.350-363 |
issn | 1464-7931 1469-185X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6218945 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adhesion Biocompatibility Biomedical materials bone Bone diseases Bone growth Bone remodeling Cell adhesion Cell adhesion & migration Cell migration Chemotactic factors Chemotaxis Cues Endothelial cells Fluid dynamics Fluid flow Glial stem cells In vivo methods and tests Mechanical stimuli mineralized surfaces Navigation Osteoblasts Osteoclasts Osteogenesis Osteoporosis Osteoprogenitor cells Progeny Receptors Stem cells Vertebrates |
title | Osteoblast migration in vertebrate bone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteoblast%20migration%20in%20vertebrate%20bone&rft.jtitle=Biological%20reviews%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=Thiel,%20Antonia&rft.date=2018-02&rft.volume=93&rft.issue=1&rft.spage=350&rft.epage=363&rft.pages=350-363&rft.issn=1464-7931&rft.eissn=1469-185X&rft_id=info:doi/10.1111/brv.12345&rft_dat=%3Cproquest_pubme%3E1987604229%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987604229&rft_id=info:pmid/28631442&rfr_iscdi=true |