Bacterial Heme-Based Sensors of Nitric Oxide

The molecule nitric oxide (NO) has been shown to regulate behaviors in bacteria, including biofilm formation. NO detection and signaling in bacteria is typically mediated by hemoproteins such as the bis-(3',5')-cyclic dimeric adenosine monophosphate-specific phosphodiesterase YybT, the tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants & redox signaling 2018-12, Vol.29 (18), p.1872-1887
Hauptverfasser: Williams, Dominique E, Nisbett, Lisa-Marie, Bacon, Bezalel, Boon, Elizabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1887
container_issue 18
container_start_page 1872
container_title Antioxidants & redox signaling
container_volume 29
creator Williams, Dominique E
Nisbett, Lisa-Marie
Bacon, Bezalel
Boon, Elizabeth
description The molecule nitric oxide (NO) has been shown to regulate behaviors in bacteria, including biofilm formation. NO detection and signaling in bacteria is typically mediated by hemoproteins such as the bis-(3',5')-cyclic dimeric adenosine monophosphate-specific phosphodiesterase YybT, the transcriptional regulator dissimilative nitrate respiration regulator, or heme-NO/oxygen binding (H-NOX) domains. H-NOX domains are well-characterized primary NO sensors that are capable of detecting nanomolar NO and influencing downstream signal transduction in many bacterial species. However, many bacteria, including the human pathogen Pseudomonas aeruginosa, respond to nanomolar concentrations of NO but do not contain an annotated H-NOX domain, indicating the existence of an additional nanomolar NO-sensing protein (NosP). Recent Advances: A newly discovered bacterial hemoprotein called NosP may also act as a primary NO sensor in bacteria, in addition to, or in place of, H-NOX. NosP was first described as a regulator of a histidine kinase signal transduction pathway that is involved in biofilm formation in P. aeruginosa. The molecular details of NO signaling in bacteria are still poorly understood. There are still many bacteria that are NO responsive but do encode either H-NOX or NosP domains in their genomes. Even among bacteria that encode H-NOX or NosP, many questions remain. The molecular mechanisms of NO regulation in many bacteria remain to be established. Future studies are required to gain knowledge about the mechanism of NosP signaling. Advancements on structural and molecular understanding of heme-based sensors in bacteria could lead to strategies to alleviate or control bacterial biofilm formation or persistent biofilm-related infections.
doi_str_mv 10.1089/ars.2017.7235
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6217740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2128110971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-3264bf0d9e81c3dd7aa533b0e54519eaa9868ff179a2dd1ce8dc75c350b9897e3</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMo7rp69CoFLx7smkmaJrkIrvgFogf1HNJkqpVuq0kr-t_boi7qaQbmx2Pee4TsAp0DVfrIhjhnFORcMi7WyBSEkKmUkK-PO-MpVXk2IVsxPlNKGQDdJBOmVCZByCk5XFjXYahsnVziEtOFjeiTO2xiG2LSlslN1YXKJbfvlcdtslHaOuLO95yRh_Oz-9PL9Pr24ur05Dp1GYgu5SzPipJ6jQoc915aKzgvKIpMgEZrtcpVWYLUlnkPDpV3UjguaKGVlshn5PhL96UvlugdNl2wtXkJ1dKGD9Payvy9NNWTeWzfTM5AyowOAgffAqF97TF2ZllFh3VtG2z7aEBzntMcBAzo_j_0ue1DM9gzDJga8tJypNIvyoU2xoDl6hmgZuzBDD2YsQcz9jDwe78drOif4PknuNqCcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128110971</pqid></control><display><type>article</type><title>Bacterial Heme-Based Sensors of Nitric Oxide</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Williams, Dominique E ; Nisbett, Lisa-Marie ; Bacon, Bezalel ; Boon, Elizabeth</creator><creatorcontrib>Williams, Dominique E ; Nisbett, Lisa-Marie ; Bacon, Bezalel ; Boon, Elizabeth</creatorcontrib><description>The molecule nitric oxide (NO) has been shown to regulate behaviors in bacteria, including biofilm formation. NO detection and signaling in bacteria is typically mediated by hemoproteins such as the bis-(3',5')-cyclic dimeric adenosine monophosphate-specific phosphodiesterase YybT, the transcriptional regulator dissimilative nitrate respiration regulator, or heme-NO/oxygen binding (H-NOX) domains. H-NOX domains are well-characterized primary NO sensors that are capable of detecting nanomolar NO and influencing downstream signal transduction in many bacterial species. However, many bacteria, including the human pathogen Pseudomonas aeruginosa, respond to nanomolar concentrations of NO but do not contain an annotated H-NOX domain, indicating the existence of an additional nanomolar NO-sensing protein (NosP). Recent Advances: A newly discovered bacterial hemoprotein called NosP may also act as a primary NO sensor in bacteria, in addition to, or in place of, H-NOX. NosP was first described as a regulator of a histidine kinase signal transduction pathway that is involved in biofilm formation in P. aeruginosa. The molecular details of NO signaling in bacteria are still poorly understood. There are still many bacteria that are NO responsive but do encode either H-NOX or NosP domains in their genomes. Even among bacteria that encode H-NOX or NosP, many questions remain. The molecular mechanisms of NO regulation in many bacteria remain to be established. Future studies are required to gain knowledge about the mechanism of NosP signaling. Advancements on structural and molecular understanding of heme-based sensors in bacteria could lead to strategies to alleviate or control bacterial biofilm formation or persistent biofilm-related infections.</description><identifier>ISSN: 1523-0864</identifier><identifier>EISSN: 1557-7716</identifier><identifier>DOI: 10.1089/ars.2017.7235</identifier><identifier>PMID: 28847157</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Adenosine monophosphate ; AMP ; Bacteria ; Bacteria - metabolism ; Biofilms ; Domains ; Forum Review ; Genomes ; Heme ; Heme - metabolism ; Histidine ; Histidine kinase ; Molecular modelling ; Nitric oxide ; Nitric Oxide - metabolism ; Phosphodiesterase ; Proteins ; Pseudomonas aeruginosa ; Sensors ; Signal transduction ; Signaling ; Transcription</subject><ispartof>Antioxidants &amp; redox signaling, 2018-12, Vol.29 (18), p.1872-1887</ispartof><rights>Copyright Mary Ann Liebert, Inc. Dec 20, 2018</rights><rights>Copyright 2018, Mary Ann Liebert, Inc., publishers 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-3264bf0d9e81c3dd7aa533b0e54519eaa9868ff179a2dd1ce8dc75c350b9897e3</citedby><cites>FETCH-LOGICAL-c415t-3264bf0d9e81c3dd7aa533b0e54519eaa9868ff179a2dd1ce8dc75c350b9897e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28847157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Dominique E</creatorcontrib><creatorcontrib>Nisbett, Lisa-Marie</creatorcontrib><creatorcontrib>Bacon, Bezalel</creatorcontrib><creatorcontrib>Boon, Elizabeth</creatorcontrib><title>Bacterial Heme-Based Sensors of Nitric Oxide</title><title>Antioxidants &amp; redox signaling</title><addtitle>Antioxid Redox Signal</addtitle><description>The molecule nitric oxide (NO) has been shown to regulate behaviors in bacteria, including biofilm formation. NO detection and signaling in bacteria is typically mediated by hemoproteins such as the bis-(3',5')-cyclic dimeric adenosine monophosphate-specific phosphodiesterase YybT, the transcriptional regulator dissimilative nitrate respiration regulator, or heme-NO/oxygen binding (H-NOX) domains. H-NOX domains are well-characterized primary NO sensors that are capable of detecting nanomolar NO and influencing downstream signal transduction in many bacterial species. However, many bacteria, including the human pathogen Pseudomonas aeruginosa, respond to nanomolar concentrations of NO but do not contain an annotated H-NOX domain, indicating the existence of an additional nanomolar NO-sensing protein (NosP). Recent Advances: A newly discovered bacterial hemoprotein called NosP may also act as a primary NO sensor in bacteria, in addition to, or in place of, H-NOX. NosP was first described as a regulator of a histidine kinase signal transduction pathway that is involved in biofilm formation in P. aeruginosa. The molecular details of NO signaling in bacteria are still poorly understood. There are still many bacteria that are NO responsive but do encode either H-NOX or NosP domains in their genomes. Even among bacteria that encode H-NOX or NosP, many questions remain. The molecular mechanisms of NO regulation in many bacteria remain to be established. Future studies are required to gain knowledge about the mechanism of NosP signaling. Advancements on structural and molecular understanding of heme-based sensors in bacteria could lead to strategies to alleviate or control bacterial biofilm formation or persistent biofilm-related infections.</description><subject>Adenosine monophosphate</subject><subject>AMP</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Biofilms</subject><subject>Domains</subject><subject>Forum Review</subject><subject>Genomes</subject><subject>Heme</subject><subject>Heme - metabolism</subject><subject>Histidine</subject><subject>Histidine kinase</subject><subject>Molecular modelling</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Phosphodiesterase</subject><subject>Proteins</subject><subject>Pseudomonas aeruginosa</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Transcription</subject><issn>1523-0864</issn><issn>1557-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1LxDAQxYMo7rp69CoFLx7smkmaJrkIrvgFogf1HNJkqpVuq0kr-t_boi7qaQbmx2Pee4TsAp0DVfrIhjhnFORcMi7WyBSEkKmUkK-PO-MpVXk2IVsxPlNKGQDdJBOmVCZByCk5XFjXYahsnVziEtOFjeiTO2xiG2LSlslN1YXKJbfvlcdtslHaOuLO95yRh_Oz-9PL9Pr24ur05Dp1GYgu5SzPipJ6jQoc915aKzgvKIpMgEZrtcpVWYLUlnkPDpV3UjguaKGVlshn5PhL96UvlugdNl2wtXkJ1dKGD9Payvy9NNWTeWzfTM5AyowOAgffAqF97TF2ZllFh3VtG2z7aEBzntMcBAzo_j_0ue1DM9gzDJga8tJypNIvyoU2xoDl6hmgZuzBDD2YsQcz9jDwe78drOif4PknuNqCcw</recordid><startdate>20181220</startdate><enddate>20181220</enddate><creator>Williams, Dominique E</creator><creator>Nisbett, Lisa-Marie</creator><creator>Bacon, Bezalel</creator><creator>Boon, Elizabeth</creator><general>Mary Ann Liebert, Inc</general><general>Mary Ann Liebert, Inc., publishers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181220</creationdate><title>Bacterial Heme-Based Sensors of Nitric Oxide</title><author>Williams, Dominique E ; Nisbett, Lisa-Marie ; Bacon, Bezalel ; Boon, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-3264bf0d9e81c3dd7aa533b0e54519eaa9868ff179a2dd1ce8dc75c350b9897e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenosine monophosphate</topic><topic>AMP</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Biofilms</topic><topic>Domains</topic><topic>Forum Review</topic><topic>Genomes</topic><topic>Heme</topic><topic>Heme - metabolism</topic><topic>Histidine</topic><topic>Histidine kinase</topic><topic>Molecular modelling</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Phosphodiesterase</topic><topic>Proteins</topic><topic>Pseudomonas aeruginosa</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Dominique E</creatorcontrib><creatorcontrib>Nisbett, Lisa-Marie</creatorcontrib><creatorcontrib>Bacon, Bezalel</creatorcontrib><creatorcontrib>Boon, Elizabeth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Antioxidants &amp; redox signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Dominique E</au><au>Nisbett, Lisa-Marie</au><au>Bacon, Bezalel</au><au>Boon, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial Heme-Based Sensors of Nitric Oxide</atitle><jtitle>Antioxidants &amp; redox signaling</jtitle><addtitle>Antioxid Redox Signal</addtitle><date>2018-12-20</date><risdate>2018</risdate><volume>29</volume><issue>18</issue><spage>1872</spage><epage>1887</epage><pages>1872-1887</pages><issn>1523-0864</issn><eissn>1557-7716</eissn><abstract>The molecule nitric oxide (NO) has been shown to regulate behaviors in bacteria, including biofilm formation. NO detection and signaling in bacteria is typically mediated by hemoproteins such as the bis-(3',5')-cyclic dimeric adenosine monophosphate-specific phosphodiesterase YybT, the transcriptional regulator dissimilative nitrate respiration regulator, or heme-NO/oxygen binding (H-NOX) domains. H-NOX domains are well-characterized primary NO sensors that are capable of detecting nanomolar NO and influencing downstream signal transduction in many bacterial species. However, many bacteria, including the human pathogen Pseudomonas aeruginosa, respond to nanomolar concentrations of NO but do not contain an annotated H-NOX domain, indicating the existence of an additional nanomolar NO-sensing protein (NosP). Recent Advances: A newly discovered bacterial hemoprotein called NosP may also act as a primary NO sensor in bacteria, in addition to, or in place of, H-NOX. NosP was first described as a regulator of a histidine kinase signal transduction pathway that is involved in biofilm formation in P. aeruginosa. The molecular details of NO signaling in bacteria are still poorly understood. There are still many bacteria that are NO responsive but do encode either H-NOX or NosP domains in their genomes. Even among bacteria that encode H-NOX or NosP, many questions remain. The molecular mechanisms of NO regulation in many bacteria remain to be established. Future studies are required to gain knowledge about the mechanism of NosP signaling. Advancements on structural and molecular understanding of heme-based sensors in bacteria could lead to strategies to alleviate or control bacterial biofilm formation or persistent biofilm-related infections.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>28847157</pmid><doi>10.1089/ars.2017.7235</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1523-0864
ispartof Antioxidants & redox signaling, 2018-12, Vol.29 (18), p.1872-1887
issn 1523-0864
1557-7716
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6217740
source MEDLINE; Alma/SFX Local Collection
subjects Adenosine monophosphate
AMP
Bacteria
Bacteria - metabolism
Biofilms
Domains
Forum Review
Genomes
Heme
Heme - metabolism
Histidine
Histidine kinase
Molecular modelling
Nitric oxide
Nitric Oxide - metabolism
Phosphodiesterase
Proteins
Pseudomonas aeruginosa
Sensors
Signal transduction
Signaling
Transcription
title Bacterial Heme-Based Sensors of Nitric Oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20Heme-Based%20Sensors%20of%20Nitric%20Oxide&rft.jtitle=Antioxidants%20&%20redox%20signaling&rft.au=Williams,%20Dominique%20E&rft.date=2018-12-20&rft.volume=29&rft.issue=18&rft.spage=1872&rft.epage=1887&rft.pages=1872-1887&rft.issn=1523-0864&rft.eissn=1557-7716&rft_id=info:doi/10.1089/ars.2017.7235&rft_dat=%3Cproquest_pubme%3E2128110971%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2128110971&rft_id=info:pmid/28847157&rfr_iscdi=true