SNP‐skimming: A fast approach to map loci generating quantitative variation in natural populations
Genome‐wide association mapping (GWAS) is a method to estimate the contribution of segregating genetic loci to trait variation. A major challenge for applying GWAS to nonmodel species has been generating dense genome‐wide markers that satisfy the key requirement that marker data are error‐free. Here...
Gespeichert in:
Veröffentlicht in: | Molecular ecology resources 2018-11, Vol.18 (6), p.1402-1414 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1414 |
---|---|
container_issue | 6 |
container_start_page | 1402 |
container_title | Molecular ecology resources |
container_volume | 18 |
creator | Wessinger, Carolyn A. Kelly, John K. Jiang, Peng Rausher, Mark D. Hileman, Lena C. |
description | Genome‐wide association mapping (GWAS) is a method to estimate the contribution of segregating genetic loci to trait variation. A major challenge for applying GWAS to nonmodel species has been generating dense genome‐wide markers that satisfy the key requirement that marker data are error‐free. Here, we present an approach to map loci within natural populations using inexpensive shallow genome sequencing. This “SNP‐skimming” approach involves two steps: an initial genome‐wide scan to identify putative targets followed by deep sequencing for confirmation of targeted loci. We apply our method to a test data set of floral dimension variation in the plant Penstemon virgatus, a member of a genus that has experienced dynamic floral adaptation that reflects repeated transitions in primary pollinator. The ability to detect SNPs that generate phenotypic variation depends on population genetic factors such as population allele frequency, effect size and epistasis, as well as sampling effects contingent on missing data and genotype uncertainty. However, both simulations and the Penstemon data suggest that the most significant tests from the initial SNP skim are likely to be true positives—loci with subtle but significant quantitative effects on phenotype. We discuss the promise and limitations of this method and consider optimal experimental design for a given sequencing effort. Simulations demonstrate that sampling a larger number of individual at the expense of average read depth per individual maximizes the power to detect loci. |
doi_str_mv | 10.1111/1755-0998.12930 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6207453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126775181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4670-14fb76c4c24ac4ff50e95c9a596ed758e9d422b32a038cc53f205a0f1278b27e3</originalsourceid><addsrcrecordid>eNqFkc9O3DAQxq2KqlDaMzdkiQuXBf-NEw5IK0QBiUKltlJv1qzXWQyJHexkK259BJ6RJ8HLwgq4dC4ez_zm04w-hLYo2aM59qmSckSqqtyjrOLkA9pYVdZWeflnHX1O6ZqQglRKfELrnBDOC1psoOnPix8P_-7TjWtb52cHeIxrSD2GrosBzBXuA26hw00wDs-stxH6zOHbAXzv-vyZWzyH6HIWPHYee-iHCA3uQjc0T9X0BX2soUn26_O7iX5_O_51dDo6vzw5Oxqfj4woFBlRUU9UYYRhAoyoa0lsJU0FsirsVMnSVlPB2IQzILw0RvKaEQmkpkyVE6Ys30SHS91umLR2aqzv8ya6i66FeKcDOP22492VnoW5LhhRQvIssPssEMPtYFOvW5eMbRrwNgxJLzDKBVcqozvv0OswRJ_P04yyQilJS5qp_SVlYkgp2nq1DCV64aBeeKQXfuknB_PE9usbVvyLZRmQS-Cva-zd__T09-OLpfAjD5Wn6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126775181</pqid></control><display><type>article</type><title>SNP‐skimming: A fast approach to map loci generating quantitative variation in natural populations</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Wessinger, Carolyn A. ; Kelly, John K. ; Jiang, Peng ; Rausher, Mark D. ; Hileman, Lena C.</creator><creatorcontrib>Wessinger, Carolyn A. ; Kelly, John K. ; Jiang, Peng ; Rausher, Mark D. ; Hileman, Lena C.</creatorcontrib><description>Genome‐wide association mapping (GWAS) is a method to estimate the contribution of segregating genetic loci to trait variation. A major challenge for applying GWAS to nonmodel species has been generating dense genome‐wide markers that satisfy the key requirement that marker data are error‐free. Here, we present an approach to map loci within natural populations using inexpensive shallow genome sequencing. This “SNP‐skimming” approach involves two steps: an initial genome‐wide scan to identify putative targets followed by deep sequencing for confirmation of targeted loci. We apply our method to a test data set of floral dimension variation in the plant Penstemon virgatus, a member of a genus that has experienced dynamic floral adaptation that reflects repeated transitions in primary pollinator. The ability to detect SNPs that generate phenotypic variation depends on population genetic factors such as population allele frequency, effect size and epistasis, as well as sampling effects contingent on missing data and genotype uncertainty. However, both simulations and the Penstemon data suggest that the most significant tests from the initial SNP skim are likely to be true positives—loci with subtle but significant quantitative effects on phenotype. We discuss the promise and limitations of this method and consider optimal experimental design for a given sequencing effort. Simulations demonstrate that sampling a larger number of individual at the expense of average read depth per individual maximizes the power to detect loci.</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.12930</identifier><identifier>PMID: 30033616</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Design of experiments ; Epistasis ; Experimental design ; Flowers - genetics ; Gene frequency ; Gene loci ; Gene mapping ; Gene sequencing ; Genetic diversity ; Genetic factors ; Genome-Wide Association Study - methods ; Genomes ; Genotype ; Genotypes ; GWAS ; High-Throughput Nucleotide Sequencing - methods ; Missing data ; multiplexed shotgun genotyping ; Natural populations ; Penstemon ; Penstemon - genetics ; Phenotype ; Phenotypes ; Phenotypic variations ; Pollinators ; Polymorphism, Single Nucleotide ; Population genetics ; Populations ; quantitative trait loci ; Sampling ; Sequence Analysis, DNA - methods ; Single-nucleotide polymorphism ; Skimming ; Target recognition ; Test procedures</subject><ispartof>Molecular ecology resources, 2018-11, Vol.18 (6), p.1402-1414</ispartof><rights>2018 John Wiley & Sons Ltd</rights><rights>2018 John Wiley & Sons Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4670-14fb76c4c24ac4ff50e95c9a596ed758e9d422b32a038cc53f205a0f1278b27e3</citedby><cites>FETCH-LOGICAL-c4670-14fb76c4c24ac4ff50e95c9a596ed758e9d422b32a038cc53f205a0f1278b27e3</cites><orcidid>0000-0003-3687-2559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-0998.12930$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-0998.12930$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30033616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wessinger, Carolyn A.</creatorcontrib><creatorcontrib>Kelly, John K.</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Rausher, Mark D.</creatorcontrib><creatorcontrib>Hileman, Lena C.</creatorcontrib><title>SNP‐skimming: A fast approach to map loci generating quantitative variation in natural populations</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>Genome‐wide association mapping (GWAS) is a method to estimate the contribution of segregating genetic loci to trait variation. A major challenge for applying GWAS to nonmodel species has been generating dense genome‐wide markers that satisfy the key requirement that marker data are error‐free. Here, we present an approach to map loci within natural populations using inexpensive shallow genome sequencing. This “SNP‐skimming” approach involves two steps: an initial genome‐wide scan to identify putative targets followed by deep sequencing for confirmation of targeted loci. We apply our method to a test data set of floral dimension variation in the plant Penstemon virgatus, a member of a genus that has experienced dynamic floral adaptation that reflects repeated transitions in primary pollinator. The ability to detect SNPs that generate phenotypic variation depends on population genetic factors such as population allele frequency, effect size and epistasis, as well as sampling effects contingent on missing data and genotype uncertainty. However, both simulations and the Penstemon data suggest that the most significant tests from the initial SNP skim are likely to be true positives—loci with subtle but significant quantitative effects on phenotype. We discuss the promise and limitations of this method and consider optimal experimental design for a given sequencing effort. Simulations demonstrate that sampling a larger number of individual at the expense of average read depth per individual maximizes the power to detect loci.</description><subject>Design of experiments</subject><subject>Epistasis</subject><subject>Experimental design</subject><subject>Flowers - genetics</subject><subject>Gene frequency</subject><subject>Gene loci</subject><subject>Gene mapping</subject><subject>Gene sequencing</subject><subject>Genetic diversity</subject><subject>Genetic factors</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>GWAS</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Missing data</subject><subject>multiplexed shotgun genotyping</subject><subject>Natural populations</subject><subject>Penstemon</subject><subject>Penstemon - genetics</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotypic variations</subject><subject>Pollinators</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics</subject><subject>Populations</subject><subject>quantitative trait loci</subject><subject>Sampling</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Single-nucleotide polymorphism</subject><subject>Skimming</subject><subject>Target recognition</subject><subject>Test procedures</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9O3DAQxq2KqlDaMzdkiQuXBf-NEw5IK0QBiUKltlJv1qzXWQyJHexkK259BJ6RJ8HLwgq4dC4ez_zm04w-hLYo2aM59qmSckSqqtyjrOLkA9pYVdZWeflnHX1O6ZqQglRKfELrnBDOC1psoOnPix8P_-7TjWtb52cHeIxrSD2GrosBzBXuA26hw00wDs-stxH6zOHbAXzv-vyZWzyH6HIWPHYee-iHCA3uQjc0T9X0BX2soUn26_O7iX5_O_51dDo6vzw5Oxqfj4woFBlRUU9UYYRhAoyoa0lsJU0FsirsVMnSVlPB2IQzILw0RvKaEQmkpkyVE6Ys30SHS91umLR2aqzv8ya6i66FeKcDOP22492VnoW5LhhRQvIssPssEMPtYFOvW5eMbRrwNgxJLzDKBVcqozvv0OswRJ_P04yyQilJS5qp_SVlYkgp2nq1DCV64aBeeKQXfuknB_PE9usbVvyLZRmQS-Cva-zd__T09-OLpfAjD5Wn6Q</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Wessinger, Carolyn A.</creator><creator>Kelly, John K.</creator><creator>Jiang, Peng</creator><creator>Rausher, Mark D.</creator><creator>Hileman, Lena C.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3687-2559</orcidid></search><sort><creationdate>201811</creationdate><title>SNP‐skimming: A fast approach to map loci generating quantitative variation in natural populations</title><author>Wessinger, Carolyn A. ; Kelly, John K. ; Jiang, Peng ; Rausher, Mark D. ; Hileman, Lena C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4670-14fb76c4c24ac4ff50e95c9a596ed758e9d422b32a038cc53f205a0f1278b27e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Design of experiments</topic><topic>Epistasis</topic><topic>Experimental design</topic><topic>Flowers - genetics</topic><topic>Gene frequency</topic><topic>Gene loci</topic><topic>Gene mapping</topic><topic>Gene sequencing</topic><topic>Genetic diversity</topic><topic>Genetic factors</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>GWAS</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Missing data</topic><topic>multiplexed shotgun genotyping</topic><topic>Natural populations</topic><topic>Penstemon</topic><topic>Penstemon - genetics</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotypic variations</topic><topic>Pollinators</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics</topic><topic>Populations</topic><topic>quantitative trait loci</topic><topic>Sampling</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Single-nucleotide polymorphism</topic><topic>Skimming</topic><topic>Target recognition</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wessinger, Carolyn A.</creatorcontrib><creatorcontrib>Kelly, John K.</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Rausher, Mark D.</creatorcontrib><creatorcontrib>Hileman, Lena C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wessinger, Carolyn A.</au><au>Kelly, John K.</au><au>Jiang, Peng</au><au>Rausher, Mark D.</au><au>Hileman, Lena C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SNP‐skimming: A fast approach to map loci generating quantitative variation in natural populations</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2018-11</date><risdate>2018</risdate><volume>18</volume><issue>6</issue><spage>1402</spage><epage>1414</epage><pages>1402-1414</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>Genome‐wide association mapping (GWAS) is a method to estimate the contribution of segregating genetic loci to trait variation. A major challenge for applying GWAS to nonmodel species has been generating dense genome‐wide markers that satisfy the key requirement that marker data are error‐free. Here, we present an approach to map loci within natural populations using inexpensive shallow genome sequencing. This “SNP‐skimming” approach involves two steps: an initial genome‐wide scan to identify putative targets followed by deep sequencing for confirmation of targeted loci. We apply our method to a test data set of floral dimension variation in the plant Penstemon virgatus, a member of a genus that has experienced dynamic floral adaptation that reflects repeated transitions in primary pollinator. The ability to detect SNPs that generate phenotypic variation depends on population genetic factors such as population allele frequency, effect size and epistasis, as well as sampling effects contingent on missing data and genotype uncertainty. However, both simulations and the Penstemon data suggest that the most significant tests from the initial SNP skim are likely to be true positives—loci with subtle but significant quantitative effects on phenotype. We discuss the promise and limitations of this method and consider optimal experimental design for a given sequencing effort. Simulations demonstrate that sampling a larger number of individual at the expense of average read depth per individual maximizes the power to detect loci.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30033616</pmid><doi>10.1111/1755-0998.12930</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3687-2559</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-098X |
ispartof | Molecular ecology resources, 2018-11, Vol.18 (6), p.1402-1414 |
issn | 1755-098X 1755-0998 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6207453 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Design of experiments Epistasis Experimental design Flowers - genetics Gene frequency Gene loci Gene mapping Gene sequencing Genetic diversity Genetic factors Genome-Wide Association Study - methods Genomes Genotype Genotypes GWAS High-Throughput Nucleotide Sequencing - methods Missing data multiplexed shotgun genotyping Natural populations Penstemon Penstemon - genetics Phenotype Phenotypes Phenotypic variations Pollinators Polymorphism, Single Nucleotide Population genetics Populations quantitative trait loci Sampling Sequence Analysis, DNA - methods Single-nucleotide polymorphism Skimming Target recognition Test procedures |
title | SNP‐skimming: A fast approach to map loci generating quantitative variation in natural populations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T04%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SNP%E2%80%90skimming:%20A%20fast%20approach%20to%20map%20loci%20generating%20quantitative%20variation%20in%20natural%20populations&rft.jtitle=Molecular%20ecology%20resources&rft.au=Wessinger,%20Carolyn%20A.&rft.date=2018-11&rft.volume=18&rft.issue=6&rft.spage=1402&rft.epage=1414&rft.pages=1402-1414&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.12930&rft_dat=%3Cproquest_pubme%3E2126775181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126775181&rft_id=info:pmid/30033616&rfr_iscdi=true |