SNP‐skimming: A fast approach to map loci generating quantitative variation in natural populations

Genome‐wide association mapping (GWAS) is a method to estimate the contribution of segregating genetic loci to trait variation. A major challenge for applying GWAS to nonmodel species has been generating dense genome‐wide markers that satisfy the key requirement that marker data are error‐free. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology resources 2018-11, Vol.18 (6), p.1402-1414
Hauptverfasser: Wessinger, Carolyn A., Kelly, John K., Jiang, Peng, Rausher, Mark D., Hileman, Lena C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1414
container_issue 6
container_start_page 1402
container_title Molecular ecology resources
container_volume 18
creator Wessinger, Carolyn A.
Kelly, John K.
Jiang, Peng
Rausher, Mark D.
Hileman, Lena C.
description Genome‐wide association mapping (GWAS) is a method to estimate the contribution of segregating genetic loci to trait variation. A major challenge for applying GWAS to nonmodel species has been generating dense genome‐wide markers that satisfy the key requirement that marker data are error‐free. Here, we present an approach to map loci within natural populations using inexpensive shallow genome sequencing. This “SNP‐skimming” approach involves two steps: an initial genome‐wide scan to identify putative targets followed by deep sequencing for confirmation of targeted loci. We apply our method to a test data set of floral dimension variation in the plant Penstemon virgatus, a member of a genus that has experienced dynamic floral adaptation that reflects repeated transitions in primary pollinator. The ability to detect SNPs that generate phenotypic variation depends on population genetic factors such as population allele frequency, effect size and epistasis, as well as sampling effects contingent on missing data and genotype uncertainty. However, both simulations and the Penstemon data suggest that the most significant tests from the initial SNP skim are likely to be true positives—loci with subtle but significant quantitative effects on phenotype. We discuss the promise and limitations of this method and consider optimal experimental design for a given sequencing effort. Simulations demonstrate that sampling a larger number of individual at the expense of average read depth per individual maximizes the power to detect loci.
doi_str_mv 10.1111/1755-0998.12930
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6207453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126775181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4670-14fb76c4c24ac4ff50e95c9a596ed758e9d422b32a038cc53f205a0f1278b27e3</originalsourceid><addsrcrecordid>eNqFkc9O3DAQxq2KqlDaMzdkiQuXBf-NEw5IK0QBiUKltlJv1qzXWQyJHexkK259BJ6RJ8HLwgq4dC4ez_zm04w-hLYo2aM59qmSckSqqtyjrOLkA9pYVdZWeflnHX1O6ZqQglRKfELrnBDOC1psoOnPix8P_-7TjWtb52cHeIxrSD2GrosBzBXuA26hw00wDs-stxH6zOHbAXzv-vyZWzyH6HIWPHYee-iHCA3uQjc0T9X0BX2soUn26_O7iX5_O_51dDo6vzw5Oxqfj4woFBlRUU9UYYRhAoyoa0lsJU0FsirsVMnSVlPB2IQzILw0RvKaEQmkpkyVE6Ys30SHS91umLR2aqzv8ya6i66FeKcDOP22492VnoW5LhhRQvIssPssEMPtYFOvW5eMbRrwNgxJLzDKBVcqozvv0OswRJ_P04yyQilJS5qp_SVlYkgp2nq1DCV64aBeeKQXfuknB_PE9usbVvyLZRmQS-Cva-zd__T09-OLpfAjD5Wn6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126775181</pqid></control><display><type>article</type><title>SNP‐skimming: A fast approach to map loci generating quantitative variation in natural populations</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Wessinger, Carolyn A. ; Kelly, John K. ; Jiang, Peng ; Rausher, Mark D. ; Hileman, Lena C.</creator><creatorcontrib>Wessinger, Carolyn A. ; Kelly, John K. ; Jiang, Peng ; Rausher, Mark D. ; Hileman, Lena C.</creatorcontrib><description>Genome‐wide association mapping (GWAS) is a method to estimate the contribution of segregating genetic loci to trait variation. A major challenge for applying GWAS to nonmodel species has been generating dense genome‐wide markers that satisfy the key requirement that marker data are error‐free. Here, we present an approach to map loci within natural populations using inexpensive shallow genome sequencing. This “SNP‐skimming” approach involves two steps: an initial genome‐wide scan to identify putative targets followed by deep sequencing for confirmation of targeted loci. We apply our method to a test data set of floral dimension variation in the plant Penstemon virgatus, a member of a genus that has experienced dynamic floral adaptation that reflects repeated transitions in primary pollinator. The ability to detect SNPs that generate phenotypic variation depends on population genetic factors such as population allele frequency, effect size and epistasis, as well as sampling effects contingent on missing data and genotype uncertainty. However, both simulations and the Penstemon data suggest that the most significant tests from the initial SNP skim are likely to be true positives—loci with subtle but significant quantitative effects on phenotype. We discuss the promise and limitations of this method and consider optimal experimental design for a given sequencing effort. Simulations demonstrate that sampling a larger number of individual at the expense of average read depth per individual maximizes the power to detect loci.</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.12930</identifier><identifier>PMID: 30033616</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Design of experiments ; Epistasis ; Experimental design ; Flowers - genetics ; Gene frequency ; Gene loci ; Gene mapping ; Gene sequencing ; Genetic diversity ; Genetic factors ; Genome-Wide Association Study - methods ; Genomes ; Genotype ; Genotypes ; GWAS ; High-Throughput Nucleotide Sequencing - methods ; Missing data ; multiplexed shotgun genotyping ; Natural populations ; Penstemon ; Penstemon - genetics ; Phenotype ; Phenotypes ; Phenotypic variations ; Pollinators ; Polymorphism, Single Nucleotide ; Population genetics ; Populations ; quantitative trait loci ; Sampling ; Sequence Analysis, DNA - methods ; Single-nucleotide polymorphism ; Skimming ; Target recognition ; Test procedures</subject><ispartof>Molecular ecology resources, 2018-11, Vol.18 (6), p.1402-1414</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4670-14fb76c4c24ac4ff50e95c9a596ed758e9d422b32a038cc53f205a0f1278b27e3</citedby><cites>FETCH-LOGICAL-c4670-14fb76c4c24ac4ff50e95c9a596ed758e9d422b32a038cc53f205a0f1278b27e3</cites><orcidid>0000-0003-3687-2559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-0998.12930$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-0998.12930$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30033616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wessinger, Carolyn A.</creatorcontrib><creatorcontrib>Kelly, John K.</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Rausher, Mark D.</creatorcontrib><creatorcontrib>Hileman, Lena C.</creatorcontrib><title>SNP‐skimming: A fast approach to map loci generating quantitative variation in natural populations</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>Genome‐wide association mapping (GWAS) is a method to estimate the contribution of segregating genetic loci to trait variation. A major challenge for applying GWAS to nonmodel species has been generating dense genome‐wide markers that satisfy the key requirement that marker data are error‐free. Here, we present an approach to map loci within natural populations using inexpensive shallow genome sequencing. This “SNP‐skimming” approach involves two steps: an initial genome‐wide scan to identify putative targets followed by deep sequencing for confirmation of targeted loci. We apply our method to a test data set of floral dimension variation in the plant Penstemon virgatus, a member of a genus that has experienced dynamic floral adaptation that reflects repeated transitions in primary pollinator. The ability to detect SNPs that generate phenotypic variation depends on population genetic factors such as population allele frequency, effect size and epistasis, as well as sampling effects contingent on missing data and genotype uncertainty. However, both simulations and the Penstemon data suggest that the most significant tests from the initial SNP skim are likely to be true positives—loci with subtle but significant quantitative effects on phenotype. We discuss the promise and limitations of this method and consider optimal experimental design for a given sequencing effort. Simulations demonstrate that sampling a larger number of individual at the expense of average read depth per individual maximizes the power to detect loci.</description><subject>Design of experiments</subject><subject>Epistasis</subject><subject>Experimental design</subject><subject>Flowers - genetics</subject><subject>Gene frequency</subject><subject>Gene loci</subject><subject>Gene mapping</subject><subject>Gene sequencing</subject><subject>Genetic diversity</subject><subject>Genetic factors</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>GWAS</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Missing data</subject><subject>multiplexed shotgun genotyping</subject><subject>Natural populations</subject><subject>Penstemon</subject><subject>Penstemon - genetics</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotypic variations</subject><subject>Pollinators</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics</subject><subject>Populations</subject><subject>quantitative trait loci</subject><subject>Sampling</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Single-nucleotide polymorphism</subject><subject>Skimming</subject><subject>Target recognition</subject><subject>Test procedures</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9O3DAQxq2KqlDaMzdkiQuXBf-NEw5IK0QBiUKltlJv1qzXWQyJHexkK259BJ6RJ8HLwgq4dC4ez_zm04w-hLYo2aM59qmSckSqqtyjrOLkA9pYVdZWeflnHX1O6ZqQglRKfELrnBDOC1psoOnPix8P_-7TjWtb52cHeIxrSD2GrosBzBXuA26hw00wDs-stxH6zOHbAXzv-vyZWzyH6HIWPHYee-iHCA3uQjc0T9X0BX2soUn26_O7iX5_O_51dDo6vzw5Oxqfj4woFBlRUU9UYYRhAoyoa0lsJU0FsirsVMnSVlPB2IQzILw0RvKaEQmkpkyVE6Ys30SHS91umLR2aqzv8ya6i66FeKcDOP22492VnoW5LhhRQvIssPssEMPtYFOvW5eMbRrwNgxJLzDKBVcqozvv0OswRJ_P04yyQilJS5qp_SVlYkgp2nq1DCV64aBeeKQXfuknB_PE9usbVvyLZRmQS-Cva-zd__T09-OLpfAjD5Wn6Q</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Wessinger, Carolyn A.</creator><creator>Kelly, John K.</creator><creator>Jiang, Peng</creator><creator>Rausher, Mark D.</creator><creator>Hileman, Lena C.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3687-2559</orcidid></search><sort><creationdate>201811</creationdate><title>SNP‐skimming: A fast approach to map loci generating quantitative variation in natural populations</title><author>Wessinger, Carolyn A. ; Kelly, John K. ; Jiang, Peng ; Rausher, Mark D. ; Hileman, Lena C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4670-14fb76c4c24ac4ff50e95c9a596ed758e9d422b32a038cc53f205a0f1278b27e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Design of experiments</topic><topic>Epistasis</topic><topic>Experimental design</topic><topic>Flowers - genetics</topic><topic>Gene frequency</topic><topic>Gene loci</topic><topic>Gene mapping</topic><topic>Gene sequencing</topic><topic>Genetic diversity</topic><topic>Genetic factors</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>GWAS</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Missing data</topic><topic>multiplexed shotgun genotyping</topic><topic>Natural populations</topic><topic>Penstemon</topic><topic>Penstemon - genetics</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotypic variations</topic><topic>Pollinators</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics</topic><topic>Populations</topic><topic>quantitative trait loci</topic><topic>Sampling</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Single-nucleotide polymorphism</topic><topic>Skimming</topic><topic>Target recognition</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wessinger, Carolyn A.</creatorcontrib><creatorcontrib>Kelly, John K.</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Rausher, Mark D.</creatorcontrib><creatorcontrib>Hileman, Lena C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wessinger, Carolyn A.</au><au>Kelly, John K.</au><au>Jiang, Peng</au><au>Rausher, Mark D.</au><au>Hileman, Lena C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SNP‐skimming: A fast approach to map loci generating quantitative variation in natural populations</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2018-11</date><risdate>2018</risdate><volume>18</volume><issue>6</issue><spage>1402</spage><epage>1414</epage><pages>1402-1414</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>Genome‐wide association mapping (GWAS) is a method to estimate the contribution of segregating genetic loci to trait variation. A major challenge for applying GWAS to nonmodel species has been generating dense genome‐wide markers that satisfy the key requirement that marker data are error‐free. Here, we present an approach to map loci within natural populations using inexpensive shallow genome sequencing. This “SNP‐skimming” approach involves two steps: an initial genome‐wide scan to identify putative targets followed by deep sequencing for confirmation of targeted loci. We apply our method to a test data set of floral dimension variation in the plant Penstemon virgatus, a member of a genus that has experienced dynamic floral adaptation that reflects repeated transitions in primary pollinator. The ability to detect SNPs that generate phenotypic variation depends on population genetic factors such as population allele frequency, effect size and epistasis, as well as sampling effects contingent on missing data and genotype uncertainty. However, both simulations and the Penstemon data suggest that the most significant tests from the initial SNP skim are likely to be true positives—loci with subtle but significant quantitative effects on phenotype. We discuss the promise and limitations of this method and consider optimal experimental design for a given sequencing effort. Simulations demonstrate that sampling a larger number of individual at the expense of average read depth per individual maximizes the power to detect loci.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30033616</pmid><doi>10.1111/1755-0998.12930</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3687-2559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-098X
ispartof Molecular ecology resources, 2018-11, Vol.18 (6), p.1402-1414
issn 1755-098X
1755-0998
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6207453
source MEDLINE; Access via Wiley Online Library
subjects Design of experiments
Epistasis
Experimental design
Flowers - genetics
Gene frequency
Gene loci
Gene mapping
Gene sequencing
Genetic diversity
Genetic factors
Genome-Wide Association Study - methods
Genomes
Genotype
Genotypes
GWAS
High-Throughput Nucleotide Sequencing - methods
Missing data
multiplexed shotgun genotyping
Natural populations
Penstemon
Penstemon - genetics
Phenotype
Phenotypes
Phenotypic variations
Pollinators
Polymorphism, Single Nucleotide
Population genetics
Populations
quantitative trait loci
Sampling
Sequence Analysis, DNA - methods
Single-nucleotide polymorphism
Skimming
Target recognition
Test procedures
title SNP‐skimming: A fast approach to map loci generating quantitative variation in natural populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T04%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SNP%E2%80%90skimming:%20A%20fast%20approach%20to%20map%20loci%20generating%20quantitative%20variation%20in%20natural%20populations&rft.jtitle=Molecular%20ecology%20resources&rft.au=Wessinger,%20Carolyn%20A.&rft.date=2018-11&rft.volume=18&rft.issue=6&rft.spage=1402&rft.epage=1414&rft.pages=1402-1414&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.12930&rft_dat=%3Cproquest_pubme%3E2126775181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126775181&rft_id=info:pmid/30033616&rfr_iscdi=true