Cellular and Genetic Causes of Idiopathic Hyperaldosteronism

Primary aldosteronism affects ≈5% to 10% of hypertensive patients and has unilateral and bilateral forms. Most unilateral primary aldosteronism is caused by computed tomography-detectable aldosterone-producing adenomas, which express CYP11B2 (aldosterone synthase) and frequently harbor somatic mutat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hypertension (Dallas, Tex. 1979) Tex. 1979), 2018-10, Vol.72 (4), p.874-880
Hauptverfasser: Omata, Kei, Satoh, Fumitoshi, Morimoto, Ryo, Ito, Sadayoshi, Yamazaki, Yuto, Nakamura, Yasuhiro, Anand, Sharath K, Guo, Zeng, Stowasser, Michael, Sasano, Hironobu, Tomlins, Scott A, Rainey, William E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 880
container_issue 4
container_start_page 874
container_title Hypertension (Dallas, Tex. 1979)
container_volume 72
creator Omata, Kei
Satoh, Fumitoshi
Morimoto, Ryo
Ito, Sadayoshi
Yamazaki, Yuto
Nakamura, Yasuhiro
Anand, Sharath K
Guo, Zeng
Stowasser, Michael
Sasano, Hironobu
Tomlins, Scott A
Rainey, William E
description Primary aldosteronism affects ≈5% to 10% of hypertensive patients and has unilateral and bilateral forms. Most unilateral primary aldosteronism is caused by computed tomography-detectable aldosterone-producing adenomas, which express CYP11B2 (aldosterone synthase) and frequently harbor somatic mutations in aldosterone-regulating genes. The cause of the most common bilateral form of primary aldosteronism, idiopathic hyperaldosteronism (IHA), is believed to be diffuse hyperplasia of aldosterone-producing cells within the adrenal cortex. Herein, a multi-institution cohort of 15 IHA adrenals was examined with CYP11B2 immunohistochemistry and next-generation sequencing. CYP11B2 immunoreactivity in adrenal glomerulosa harboring non-nodular hyperplasia was only observed in 4/15 IHA adrenals suggesting that hyperplasia of CYP11B2-expressing cells may not be the major cause of IHA. However, the adrenal cortex of all IHA adrenals harbored at least 1 CYP11B2-positive aldosterone-producing cell cluster (APCC) or micro-aldosterone-producing adenomas. The number of APCCs per case (and individual APCC area) in IHA adrenals was significantly larger than in normotensive controls. Next-generation sequencing of DNA from 99 IHA APCCs demonstrated somatic mutations in genes encoding the L-type calcium voltage-gated channel subunit α 1-D (CACNA1D, n=57; 58%) and potassium voltage-gated channel subfamily J-5 (KCNJ5, n=1; 1%). These data suggest that IHA may result from not only hyperplasia but also the accumulation or enlargement of computed tomography-undetectable APCC harboring somatic aldosterone-driver gene mutations. The high prevalence of mutations in the CACNA1D L-type calcium channel provides a potential actionable therapeutic target that could complement mineralocorticoid blockade and inhibit aldosterone overproduction in some IHA patients.
doi_str_mv 10.1161/HYPERTENSIONAHA.118.11086
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6207209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125315298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5696-ff6e69d5eaf0f2fdb97f64a9684ef91c8e1ec19b7146950eadd71cb809a129053</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMobn78Bal33lRz2jRtQIUx5jYQFT9Ar0LWnrhq18ykVfbvjW6KeuVFCLznPe855yFkH-ghAIej0cPV4Pp2cHEzvrzojXpezPyjGV8jXUgiFrKEx-ukS0GwUADcd8iWc0-UAmMs3SSdmMYJSyPaJcd9rKq2UjZQdREMscamzIO-ah26wOhgXJRmrpqpF0eLOVpVFcY1aE1dutkO2dCqcri7-rfJ3dngtj8Kzy-H437vPMwTLnioNUcuigSVpjrSxUSkmjMleMZQC8gzBMxBTFJgXCQUVVGkkE8yKhREgibxNjld5s7byQyLHOvGLyLntpwpu5BGlfJ3pS6n8tG8Sh5Rf6XwAQerAGteWnSNnJUu95erGk3rZARREntyIvNWsbTm1jhnUX-PASo_6Ms_9L2YyU_6vnfv557fnV-4veFkaXgzlYfonqv2Da2coqqa6T8GvAN1_5e9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125315298</pqid></control><display><type>article</type><title>Cellular and Genetic Causes of Idiopathic Hyperaldosteronism</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Journals@Ovid Complete</source><creator>Omata, Kei ; Satoh, Fumitoshi ; Morimoto, Ryo ; Ito, Sadayoshi ; Yamazaki, Yuto ; Nakamura, Yasuhiro ; Anand, Sharath K ; Guo, Zeng ; Stowasser, Michael ; Sasano, Hironobu ; Tomlins, Scott A ; Rainey, William E</creator><creatorcontrib>Omata, Kei ; Satoh, Fumitoshi ; Morimoto, Ryo ; Ito, Sadayoshi ; Yamazaki, Yuto ; Nakamura, Yasuhiro ; Anand, Sharath K ; Guo, Zeng ; Stowasser, Michael ; Sasano, Hironobu ; Tomlins, Scott A ; Rainey, William E</creatorcontrib><description>Primary aldosteronism affects ≈5% to 10% of hypertensive patients and has unilateral and bilateral forms. Most unilateral primary aldosteronism is caused by computed tomography-detectable aldosterone-producing adenomas, which express CYP11B2 (aldosterone synthase) and frequently harbor somatic mutations in aldosterone-regulating genes. The cause of the most common bilateral form of primary aldosteronism, idiopathic hyperaldosteronism (IHA), is believed to be diffuse hyperplasia of aldosterone-producing cells within the adrenal cortex. Herein, a multi-institution cohort of 15 IHA adrenals was examined with CYP11B2 immunohistochemistry and next-generation sequencing. CYP11B2 immunoreactivity in adrenal glomerulosa harboring non-nodular hyperplasia was only observed in 4/15 IHA adrenals suggesting that hyperplasia of CYP11B2-expressing cells may not be the major cause of IHA. However, the adrenal cortex of all IHA adrenals harbored at least 1 CYP11B2-positive aldosterone-producing cell cluster (APCC) or micro-aldosterone-producing adenomas. The number of APCCs per case (and individual APCC area) in IHA adrenals was significantly larger than in normotensive controls. Next-generation sequencing of DNA from 99 IHA APCCs demonstrated somatic mutations in genes encoding the L-type calcium voltage-gated channel subunit α 1-D (CACNA1D, n=57; 58%) and potassium voltage-gated channel subfamily J-5 (KCNJ5, n=1; 1%). These data suggest that IHA may result from not only hyperplasia but also the accumulation or enlargement of computed tomography-undetectable APCC harboring somatic aldosterone-driver gene mutations. The high prevalence of mutations in the CACNA1D L-type calcium channel provides a potential actionable therapeutic target that could complement mineralocorticoid blockade and inhibit aldosterone overproduction in some IHA patients.</description><identifier>ISSN: 0194-911X</identifier><identifier>EISSN: 1524-4563</identifier><identifier>DOI: 10.1161/HYPERTENSIONAHA.118.11086</identifier><identifier>PMID: 30354720</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Aldosterone - biosynthesis ; Aldosterone - genetics ; Calcium Channels, L-Type - genetics ; Cytochrome P-450 CYP11B2 - metabolism ; Female ; G Protein-Coupled Inwardly-Rectifying Potassium Channels - genetics ; Gene Expression Regulation ; Humans ; Hyperaldosteronism - complications ; Hyperaldosteronism - genetics ; Hyperaldosteronism - metabolism ; Hyperplasia ; Hypertension - etiology ; Hypertension - metabolism ; Immunohistochemistry ; Male ; Mutation ; Zona Glomerulosa - metabolism ; Zona Glomerulosa - pathology</subject><ispartof>Hypertension (Dallas, Tex. 1979), 2018-10, Vol.72 (4), p.874-880</ispartof><rights>2018 American Heart Association, Inc</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5696-ff6e69d5eaf0f2fdb97f64a9684ef91c8e1ec19b7146950eadd71cb809a129053</citedby><cites>FETCH-LOGICAL-c5696-ff6e69d5eaf0f2fdb97f64a9684ef91c8e1ec19b7146950eadd71cb809a129053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3674,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30354720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Omata, Kei</creatorcontrib><creatorcontrib>Satoh, Fumitoshi</creatorcontrib><creatorcontrib>Morimoto, Ryo</creatorcontrib><creatorcontrib>Ito, Sadayoshi</creatorcontrib><creatorcontrib>Yamazaki, Yuto</creatorcontrib><creatorcontrib>Nakamura, Yasuhiro</creatorcontrib><creatorcontrib>Anand, Sharath K</creatorcontrib><creatorcontrib>Guo, Zeng</creatorcontrib><creatorcontrib>Stowasser, Michael</creatorcontrib><creatorcontrib>Sasano, Hironobu</creatorcontrib><creatorcontrib>Tomlins, Scott A</creatorcontrib><creatorcontrib>Rainey, William E</creatorcontrib><title>Cellular and Genetic Causes of Idiopathic Hyperaldosteronism</title><title>Hypertension (Dallas, Tex. 1979)</title><addtitle>Hypertension</addtitle><description>Primary aldosteronism affects ≈5% to 10% of hypertensive patients and has unilateral and bilateral forms. Most unilateral primary aldosteronism is caused by computed tomography-detectable aldosterone-producing adenomas, which express CYP11B2 (aldosterone synthase) and frequently harbor somatic mutations in aldosterone-regulating genes. The cause of the most common bilateral form of primary aldosteronism, idiopathic hyperaldosteronism (IHA), is believed to be diffuse hyperplasia of aldosterone-producing cells within the adrenal cortex. Herein, a multi-institution cohort of 15 IHA adrenals was examined with CYP11B2 immunohistochemistry and next-generation sequencing. CYP11B2 immunoreactivity in adrenal glomerulosa harboring non-nodular hyperplasia was only observed in 4/15 IHA adrenals suggesting that hyperplasia of CYP11B2-expressing cells may not be the major cause of IHA. However, the adrenal cortex of all IHA adrenals harbored at least 1 CYP11B2-positive aldosterone-producing cell cluster (APCC) or micro-aldosterone-producing adenomas. The number of APCCs per case (and individual APCC area) in IHA adrenals was significantly larger than in normotensive controls. Next-generation sequencing of DNA from 99 IHA APCCs demonstrated somatic mutations in genes encoding the L-type calcium voltage-gated channel subunit α 1-D (CACNA1D, n=57; 58%) and potassium voltage-gated channel subfamily J-5 (KCNJ5, n=1; 1%). These data suggest that IHA may result from not only hyperplasia but also the accumulation or enlargement of computed tomography-undetectable APCC harboring somatic aldosterone-driver gene mutations. The high prevalence of mutations in the CACNA1D L-type calcium channel provides a potential actionable therapeutic target that could complement mineralocorticoid blockade and inhibit aldosterone overproduction in some IHA patients.</description><subject>Aldosterone - biosynthesis</subject><subject>Aldosterone - genetics</subject><subject>Calcium Channels, L-Type - genetics</subject><subject>Cytochrome P-450 CYP11B2 - metabolism</subject><subject>Female</subject><subject>G Protein-Coupled Inwardly-Rectifying Potassium Channels - genetics</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Hyperaldosteronism - complications</subject><subject>Hyperaldosteronism - genetics</subject><subject>Hyperaldosteronism - metabolism</subject><subject>Hyperplasia</subject><subject>Hypertension - etiology</subject><subject>Hypertension - metabolism</subject><subject>Immunohistochemistry</subject><subject>Male</subject><subject>Mutation</subject><subject>Zona Glomerulosa - metabolism</subject><subject>Zona Glomerulosa - pathology</subject><issn>0194-911X</issn><issn>1524-4563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkF1LwzAUhoMobn78Bal33lRz2jRtQIUx5jYQFT9Ar0LWnrhq18ykVfbvjW6KeuVFCLznPe855yFkH-ghAIej0cPV4Pp2cHEzvrzojXpezPyjGV8jXUgiFrKEx-ukS0GwUADcd8iWc0-UAmMs3SSdmMYJSyPaJcd9rKq2UjZQdREMscamzIO-ah26wOhgXJRmrpqpF0eLOVpVFcY1aE1dutkO2dCqcri7-rfJ3dngtj8Kzy-H437vPMwTLnioNUcuigSVpjrSxUSkmjMleMZQC8gzBMxBTFJgXCQUVVGkkE8yKhREgibxNjld5s7byQyLHOvGLyLntpwpu5BGlfJ3pS6n8tG8Sh5Rf6XwAQerAGteWnSNnJUu95erGk3rZARREntyIvNWsbTm1jhnUX-PASo_6Ms_9L2YyU_6vnfv557fnV-4veFkaXgzlYfonqv2Da2coqqa6T8GvAN1_5e9</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Omata, Kei</creator><creator>Satoh, Fumitoshi</creator><creator>Morimoto, Ryo</creator><creator>Ito, Sadayoshi</creator><creator>Yamazaki, Yuto</creator><creator>Nakamura, Yasuhiro</creator><creator>Anand, Sharath K</creator><creator>Guo, Zeng</creator><creator>Stowasser, Michael</creator><creator>Sasano, Hironobu</creator><creator>Tomlins, Scott A</creator><creator>Rainey, William E</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181001</creationdate><title>Cellular and Genetic Causes of Idiopathic Hyperaldosteronism</title><author>Omata, Kei ; Satoh, Fumitoshi ; Morimoto, Ryo ; Ito, Sadayoshi ; Yamazaki, Yuto ; Nakamura, Yasuhiro ; Anand, Sharath K ; Guo, Zeng ; Stowasser, Michael ; Sasano, Hironobu ; Tomlins, Scott A ; Rainey, William E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5696-ff6e69d5eaf0f2fdb97f64a9684ef91c8e1ec19b7146950eadd71cb809a129053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aldosterone - biosynthesis</topic><topic>Aldosterone - genetics</topic><topic>Calcium Channels, L-Type - genetics</topic><topic>Cytochrome P-450 CYP11B2 - metabolism</topic><topic>Female</topic><topic>G Protein-Coupled Inwardly-Rectifying Potassium Channels - genetics</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Hyperaldosteronism - complications</topic><topic>Hyperaldosteronism - genetics</topic><topic>Hyperaldosteronism - metabolism</topic><topic>Hyperplasia</topic><topic>Hypertension - etiology</topic><topic>Hypertension - metabolism</topic><topic>Immunohistochemistry</topic><topic>Male</topic><topic>Mutation</topic><topic>Zona Glomerulosa - metabolism</topic><topic>Zona Glomerulosa - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omata, Kei</creatorcontrib><creatorcontrib>Satoh, Fumitoshi</creatorcontrib><creatorcontrib>Morimoto, Ryo</creatorcontrib><creatorcontrib>Ito, Sadayoshi</creatorcontrib><creatorcontrib>Yamazaki, Yuto</creatorcontrib><creatorcontrib>Nakamura, Yasuhiro</creatorcontrib><creatorcontrib>Anand, Sharath K</creatorcontrib><creatorcontrib>Guo, Zeng</creatorcontrib><creatorcontrib>Stowasser, Michael</creatorcontrib><creatorcontrib>Sasano, Hironobu</creatorcontrib><creatorcontrib>Tomlins, Scott A</creatorcontrib><creatorcontrib>Rainey, William E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omata, Kei</au><au>Satoh, Fumitoshi</au><au>Morimoto, Ryo</au><au>Ito, Sadayoshi</au><au>Yamazaki, Yuto</au><au>Nakamura, Yasuhiro</au><au>Anand, Sharath K</au><au>Guo, Zeng</au><au>Stowasser, Michael</au><au>Sasano, Hironobu</au><au>Tomlins, Scott A</au><au>Rainey, William E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular and Genetic Causes of Idiopathic Hyperaldosteronism</atitle><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle><addtitle>Hypertension</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>72</volume><issue>4</issue><spage>874</spage><epage>880</epage><pages>874-880</pages><issn>0194-911X</issn><eissn>1524-4563</eissn><abstract>Primary aldosteronism affects ≈5% to 10% of hypertensive patients and has unilateral and bilateral forms. Most unilateral primary aldosteronism is caused by computed tomography-detectable aldosterone-producing adenomas, which express CYP11B2 (aldosterone synthase) and frequently harbor somatic mutations in aldosterone-regulating genes. The cause of the most common bilateral form of primary aldosteronism, idiopathic hyperaldosteronism (IHA), is believed to be diffuse hyperplasia of aldosterone-producing cells within the adrenal cortex. Herein, a multi-institution cohort of 15 IHA adrenals was examined with CYP11B2 immunohistochemistry and next-generation sequencing. CYP11B2 immunoreactivity in adrenal glomerulosa harboring non-nodular hyperplasia was only observed in 4/15 IHA adrenals suggesting that hyperplasia of CYP11B2-expressing cells may not be the major cause of IHA. However, the adrenal cortex of all IHA adrenals harbored at least 1 CYP11B2-positive aldosterone-producing cell cluster (APCC) or micro-aldosterone-producing adenomas. The number of APCCs per case (and individual APCC area) in IHA adrenals was significantly larger than in normotensive controls. Next-generation sequencing of DNA from 99 IHA APCCs demonstrated somatic mutations in genes encoding the L-type calcium voltage-gated channel subunit α 1-D (CACNA1D, n=57; 58%) and potassium voltage-gated channel subfamily J-5 (KCNJ5, n=1; 1%). These data suggest that IHA may result from not only hyperplasia but also the accumulation or enlargement of computed tomography-undetectable APCC harboring somatic aldosterone-driver gene mutations. The high prevalence of mutations in the CACNA1D L-type calcium channel provides a potential actionable therapeutic target that could complement mineralocorticoid blockade and inhibit aldosterone overproduction in some IHA patients.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>30354720</pmid><doi>10.1161/HYPERTENSIONAHA.118.11086</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0194-911X
ispartof Hypertension (Dallas, Tex. 1979), 2018-10, Vol.72 (4), p.874-880
issn 0194-911X
1524-4563
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6207209
source MEDLINE; American Heart Association Journals; EZB-FREE-00999 freely available EZB journals; Journals@Ovid Complete
subjects Aldosterone - biosynthesis
Aldosterone - genetics
Calcium Channels, L-Type - genetics
Cytochrome P-450 CYP11B2 - metabolism
Female
G Protein-Coupled Inwardly-Rectifying Potassium Channels - genetics
Gene Expression Regulation
Humans
Hyperaldosteronism - complications
Hyperaldosteronism - genetics
Hyperaldosteronism - metabolism
Hyperplasia
Hypertension - etiology
Hypertension - metabolism
Immunohistochemistry
Male
Mutation
Zona Glomerulosa - metabolism
Zona Glomerulosa - pathology
title Cellular and Genetic Causes of Idiopathic Hyperaldosteronism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20and%20Genetic%20Causes%20of%20Idiopathic%20Hyperaldosteronism&rft.jtitle=Hypertension%20(Dallas,%20Tex.%201979)&rft.au=Omata,%20Kei&rft.date=2018-10-01&rft.volume=72&rft.issue=4&rft.spage=874&rft.epage=880&rft.pages=874-880&rft.issn=0194-911X&rft.eissn=1524-4563&rft_id=info:doi/10.1161/HYPERTENSIONAHA.118.11086&rft_dat=%3Cproquest_pubme%3E2125315298%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125315298&rft_id=info:pmid/30354720&rfr_iscdi=true