Randomly distributed embedding making short-term high-dimensional data predictable

Future state prediction for nonlinear dynamical systems is a challenging task, particularly when only a few time series samples for high-dimensional variables are available from real-world systems. In this work, we propose a model-free framework, named randomly distributed embedding (RDE), to achiev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-10, Vol.115 (43), p.E9994-E10002
Hauptverfasser: Ma, Huanfei, Leng, Siyang, Aihara, Kazuyuki, Lin, Wei, Chen, Luonan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E10002
container_issue 43
container_start_page E9994
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Ma, Huanfei
Leng, Siyang
Aihara, Kazuyuki
Lin, Wei
Chen, Luonan
description Future state prediction for nonlinear dynamical systems is a challenging task, particularly when only a few time series samples for high-dimensional variables are available from real-world systems. In this work, we propose a model-free framework, named randomly distributed embedding (RDE), to achieve accurate future state prediction based on short-term high-dimensional data. Specifically, from the observed data of high-dimensional variables, the RDE framework randomly generates a sufficient number of low-dimensional “nondelay embeddings” and maps each of them to a “delay embedding,” which is constructed from the data of a to be predicted target variable. Any of these mappings can perform as a low-dimensional weak predictor for future state prediction, and all of such mappings generate a distribution of predicted future states. This distribution actually patches all pieces of association information from various embeddings unbiasedly or biasedly into the whole dynamics of the target variable, which after operated by appropriate estimation strategies, creates a stronger predictor for achieving prediction in a more reliable and robust form. Through applying the RDE framework to data from both representative models and real-world systems, we reveal that a high-dimension feature is no longer an obstacle but a source of information crucial to accurate prediction for short-term data, even under noise deterioration.
doi_str_mv 10.1073/pnas.1802987115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6205453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26532373</jstor_id><sourcerecordid>26532373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-5ffe4f1f5bdea54926a24d76839a6f3e9cafe12d959bf52fe78150d01981961b3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS1ERbeFMydQJC69pB1_xfEFqapaQKqEVMHZcuLxrpckXmwHqf89WW1ZoKd3mN88zZtHyFsKlxQUv9pNNl_SFphuFaXyBVlR0LRuhIaXZAXAVN0KJk7JWc5bANCyhVfklC8LSjC2Ig8PdnJxHB4rF3JJoZsLugrHDp0L07oa7Y-95E1MpS6YxmoT1pvahRGnHOJkh8rZYqtdQhf6YrsBX5MTb4eMb570nHy_u_1287m-__rpy831fd1L0KWW3qPw1MvOoZVCs8Yy4VTTcm0bz1H31iNlTkvdeck8qpZKcEB1S3VDO35OPh58d3M3outxKskOZpfCaNOjiTaY_ydT2Jh1_GUaBlJIvhhcPBmk-HPGXMwYco_DYCeMczaMUsW1AKAL-uEZuo1zWtLvqeWbivJGLNTVgepTzDmhPx5Dwez7Mvu-zN--lo33_2Y48n8KWoB3B2CbS0zHOWskZ1xx_hsU5pyS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130271364</pqid></control><display><type>article</type><title>Randomly distributed embedding making short-term high-dimensional data predictable</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ma, Huanfei ; Leng, Siyang ; Aihara, Kazuyuki ; Lin, Wei ; Chen, Luonan</creator><creatorcontrib>Ma, Huanfei ; Leng, Siyang ; Aihara, Kazuyuki ; Lin, Wei ; Chen, Luonan</creatorcontrib><description>Future state prediction for nonlinear dynamical systems is a challenging task, particularly when only a few time series samples for high-dimensional variables are available from real-world systems. In this work, we propose a model-free framework, named randomly distributed embedding (RDE), to achieve accurate future state prediction based on short-term high-dimensional data. Specifically, from the observed data of high-dimensional variables, the RDE framework randomly generates a sufficient number of low-dimensional “nondelay embeddings” and maps each of them to a “delay embedding,” which is constructed from the data of a to be predicted target variable. Any of these mappings can perform as a low-dimensional weak predictor for future state prediction, and all of such mappings generate a distribution of predicted future states. This distribution actually patches all pieces of association information from various embeddings unbiasedly or biasedly into the whole dynamics of the target variable, which after operated by appropriate estimation strategies, creates a stronger predictor for achieving prediction in a more reliable and robust form. Through applying the RDE framework to data from both representative models and real-world systems, we reveal that a high-dimension feature is no longer an obstacle but a source of information crucial to accurate prediction for short-term data, even under noise deterioration.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1802987115</identifier><identifier>PMID: 30297422</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Embedding ; Mathematical models ; Noise ; Nonlinear systems ; Object linking &amp; embedding ; Physical Sciences ; PNAS Plus ; Predictions ; Real variables ; Time series</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-10, Vol.115 (43), p.E9994-E10002</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Oct 23, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-5ffe4f1f5bdea54926a24d76839a6f3e9cafe12d959bf52fe78150d01981961b3</citedby><cites>FETCH-LOGICAL-c509t-5ffe4f1f5bdea54926a24d76839a6f3e9cafe12d959bf52fe78150d01981961b3</cites><orcidid>0000-0002-4602-9816 ; 0000-0002-1863-4306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26532373$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26532373$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30297422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Huanfei</creatorcontrib><creatorcontrib>Leng, Siyang</creatorcontrib><creatorcontrib>Aihara, Kazuyuki</creatorcontrib><creatorcontrib>Lin, Wei</creatorcontrib><creatorcontrib>Chen, Luonan</creatorcontrib><title>Randomly distributed embedding making short-term high-dimensional data predictable</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Future state prediction for nonlinear dynamical systems is a challenging task, particularly when only a few time series samples for high-dimensional variables are available from real-world systems. In this work, we propose a model-free framework, named randomly distributed embedding (RDE), to achieve accurate future state prediction based on short-term high-dimensional data. Specifically, from the observed data of high-dimensional variables, the RDE framework randomly generates a sufficient number of low-dimensional “nondelay embeddings” and maps each of them to a “delay embedding,” which is constructed from the data of a to be predicted target variable. Any of these mappings can perform as a low-dimensional weak predictor for future state prediction, and all of such mappings generate a distribution of predicted future states. This distribution actually patches all pieces of association information from various embeddings unbiasedly or biasedly into the whole dynamics of the target variable, which after operated by appropriate estimation strategies, creates a stronger predictor for achieving prediction in a more reliable and robust form. Through applying the RDE framework to data from both representative models and real-world systems, we reveal that a high-dimension feature is no longer an obstacle but a source of information crucial to accurate prediction for short-term data, even under noise deterioration.</description><subject>Biological Sciences</subject><subject>Embedding</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Nonlinear systems</subject><subject>Object linking &amp; embedding</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Predictions</subject><subject>Real variables</subject><subject>Time series</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS1ERbeFMydQJC69pB1_xfEFqapaQKqEVMHZcuLxrpckXmwHqf89WW1ZoKd3mN88zZtHyFsKlxQUv9pNNl_SFphuFaXyBVlR0LRuhIaXZAXAVN0KJk7JWc5bANCyhVfklC8LSjC2Ig8PdnJxHB4rF3JJoZsLugrHDp0L07oa7Y-95E1MpS6YxmoT1pvahRGnHOJkh8rZYqtdQhf6YrsBX5MTb4eMb570nHy_u_1287m-__rpy831fd1L0KWW3qPw1MvOoZVCs8Yy4VTTcm0bz1H31iNlTkvdeck8qpZKcEB1S3VDO35OPh58d3M3outxKskOZpfCaNOjiTaY_ydT2Jh1_GUaBlJIvhhcPBmk-HPGXMwYco_DYCeMczaMUsW1AKAL-uEZuo1zWtLvqeWbivJGLNTVgepTzDmhPx5Dwez7Mvu-zN--lo33_2Y48n8KWoB3B2CbS0zHOWskZ1xx_hsU5pyS</recordid><startdate>20181023</startdate><enddate>20181023</enddate><creator>Ma, Huanfei</creator><creator>Leng, Siyang</creator><creator>Aihara, Kazuyuki</creator><creator>Lin, Wei</creator><creator>Chen, Luonan</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4602-9816</orcidid><orcidid>https://orcid.org/0000-0002-1863-4306</orcidid></search><sort><creationdate>20181023</creationdate><title>Randomly distributed embedding making short-term high-dimensional data predictable</title><author>Ma, Huanfei ; Leng, Siyang ; Aihara, Kazuyuki ; Lin, Wei ; Chen, Luonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-5ffe4f1f5bdea54926a24d76839a6f3e9cafe12d959bf52fe78150d01981961b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological Sciences</topic><topic>Embedding</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Nonlinear systems</topic><topic>Object linking &amp; embedding</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Predictions</topic><topic>Real variables</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Huanfei</creatorcontrib><creatorcontrib>Leng, Siyang</creatorcontrib><creatorcontrib>Aihara, Kazuyuki</creatorcontrib><creatorcontrib>Lin, Wei</creatorcontrib><creatorcontrib>Chen, Luonan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Huanfei</au><au>Leng, Siyang</au><au>Aihara, Kazuyuki</au><au>Lin, Wei</au><au>Chen, Luonan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Randomly distributed embedding making short-term high-dimensional data predictable</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-10-23</date><risdate>2018</risdate><volume>115</volume><issue>43</issue><spage>E9994</spage><epage>E10002</epage><pages>E9994-E10002</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Future state prediction for nonlinear dynamical systems is a challenging task, particularly when only a few time series samples for high-dimensional variables are available from real-world systems. In this work, we propose a model-free framework, named randomly distributed embedding (RDE), to achieve accurate future state prediction based on short-term high-dimensional data. Specifically, from the observed data of high-dimensional variables, the RDE framework randomly generates a sufficient number of low-dimensional “nondelay embeddings” and maps each of them to a “delay embedding,” which is constructed from the data of a to be predicted target variable. Any of these mappings can perform as a low-dimensional weak predictor for future state prediction, and all of such mappings generate a distribution of predicted future states. This distribution actually patches all pieces of association information from various embeddings unbiasedly or biasedly into the whole dynamics of the target variable, which after operated by appropriate estimation strategies, creates a stronger predictor for achieving prediction in a more reliable and robust form. Through applying the RDE framework to data from both representative models and real-world systems, we reveal that a high-dimension feature is no longer an obstacle but a source of information crucial to accurate prediction for short-term data, even under noise deterioration.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30297422</pmid><doi>10.1073/pnas.1802987115</doi><orcidid>https://orcid.org/0000-0002-4602-9816</orcidid><orcidid>https://orcid.org/0000-0002-1863-4306</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-10, Vol.115 (43), p.E9994-E10002
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6205453
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Embedding
Mathematical models
Noise
Nonlinear systems
Object linking & embedding
Physical Sciences
PNAS Plus
Predictions
Real variables
Time series
title Randomly distributed embedding making short-term high-dimensional data predictable
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Randomly%20distributed%20embedding%20making%20short-term%20high-dimensional%20data%20predictable&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ma,%20Huanfei&rft.date=2018-10-23&rft.volume=115&rft.issue=43&rft.spage=E9994&rft.epage=E10002&rft.pages=E9994-E10002&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1802987115&rft_dat=%3Cjstor_pubme%3E26532373%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130271364&rft_id=info:pmid/30297422&rft_jstor_id=26532373&rfr_iscdi=true