Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways

Fatty acid channeling into oxidation or storage modes depends on physiological conditions and hormonal signaling. However, the directionality of this channeling may also depend on the association of each of the five acyl-CoA synthetase isoforms with specific protein partners. Long-chain acyl-CoA syn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2018-10, Vol.293 (43), p.16724-16740
Hauptverfasser: Young, Pamela A., Senkal, Can E., Suchanek, Amanda L., Grevengoed, Trisha J., Lin, Dennis D., Zhao, Liyang, Crunk, Amanda E., Klett, Eric L., Füllekrug, Joachim, Obeid, Lina M., Coleman, Rosalind A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16740
container_issue 43
container_start_page 16724
container_title The Journal of biological chemistry
container_volume 293
creator Young, Pamela A.
Senkal, Can E.
Suchanek, Amanda L.
Grevengoed, Trisha J.
Lin, Dennis D.
Zhao, Liyang
Crunk, Amanda E.
Klett, Eric L.
Füllekrug, Joachim
Obeid, Lina M.
Coleman, Rosalind A.
description Fatty acid channeling into oxidation or storage modes depends on physiological conditions and hormonal signaling. However, the directionality of this channeling may also depend on the association of each of the five acyl-CoA synthetase isoforms with specific protein partners. Long-chain acyl-CoA synthetases (ACSLs) catalyze the conversion of long-chain fatty acids to fatty acyl-CoAs, which are then either oxidized or used in esterification reactions. In highly oxidative tissues, ACSL1 is located on the outer mitochondrial membrane (OMM) and directs fatty acids into mitochondria for β-oxidation. In the liver, however, about 50% of ACSL1 is located on the endoplasmic reticulum (ER) where its metabolic function is unclear. Because hepatic fatty acid partitioning is likely to require the interaction of ACSL1 with other specific proteins, we used an unbiased protein interaction technique, BioID, to discover ACSL1-binding partners in hepatocytes. We targeted ACSL1 either to the ER or to the OMM of Hepa 1–6 cells as a fusion protein with the Escherichia coli biotin ligase, BirA*. Proteomic analysis identified 98 proteins that specifically interacted with ACSL1 at the ER, 55 at the OMM, and 43 common to both subcellular locations. We found subsets of peroxisomal and lipid droplet proteins, tethering proteins, and vesicle proteins, uncovering a dynamic role for ACSL1 in organelle and lipid droplet interactions. Proteins involved in lipid metabolism were also identified, including acyl-CoA–binding proteins and ceramide synthase isoforms 2 and 5. Our results provide fundamental and detailed insights into protein interaction networks that control fatty acid metabolism.
doi_str_mv 10.1074/jbc.RA118.004049
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6204890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820332361</els_id><sourcerecordid>2101271748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-a6577caa2c63e2df63cc08a7ab85ccee92b8ba87424e81eb4eb2c3ed2481be553</originalsourceid><addsrcrecordid>eNp1kUGP0zAQhS0EYruFOyfkI5cU23ESlwNSVQGLVAkJgcTNmkymGy-pXWK3qxz473jJsoIDPtiHee-N9T7GXkixkqLRr29aXH3eSGlWQmih14_YQgpTFmUlvz1mCyGULNaqMhfsMsYbkY9ey6fsohRyLUpVL9jPXfDXBfbgPAechmIbNjxOPvWUIBKX3PlEI2CK_Nalnn-niR_HkMj5yFMPKduSO0MiDr7jnRsJE99DSlOeuC7eBQTuHfbEezpCcsjz3d_CFJ-xJ3sYIj2_f5fs6_t3X7ZXxe7Th4_bza5ArZtUQF01DQIorEtS3b4uEYWBBlpTIRKtVWtaMI1WmoykVlOrsKROaSNbqqpyyd7OucdTe6AOyacRBnsc3QHGyQZw9t-Jd729DmdbK6FNrmrJXt0HjOHHiWKyBxeRhgE8hVO0SgqpGtlok6ViluIYYhxp_7BGCntHzWZq9jc1O1PLlpd_f-_B8AdTFryZBZRLOjsabURHHmmu23bB_T_9F-xIquU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101271748</pqid></control><display><type>article</type><title>Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Young, Pamela A. ; Senkal, Can E. ; Suchanek, Amanda L. ; Grevengoed, Trisha J. ; Lin, Dennis D. ; Zhao, Liyang ; Crunk, Amanda E. ; Klett, Eric L. ; Füllekrug, Joachim ; Obeid, Lina M. ; Coleman, Rosalind A.</creator><creatorcontrib>Young, Pamela A. ; Senkal, Can E. ; Suchanek, Amanda L. ; Grevengoed, Trisha J. ; Lin, Dennis D. ; Zhao, Liyang ; Crunk, Amanda E. ; Klett, Eric L. ; Füllekrug, Joachim ; Obeid, Lina M. ; Coleman, Rosalind A.</creatorcontrib><description>Fatty acid channeling into oxidation or storage modes depends on physiological conditions and hormonal signaling. However, the directionality of this channeling may also depend on the association of each of the five acyl-CoA synthetase isoforms with specific protein partners. Long-chain acyl-CoA synthetases (ACSLs) catalyze the conversion of long-chain fatty acids to fatty acyl-CoAs, which are then either oxidized or used in esterification reactions. In highly oxidative tissues, ACSL1 is located on the outer mitochondrial membrane (OMM) and directs fatty acids into mitochondria for β-oxidation. In the liver, however, about 50% of ACSL1 is located on the endoplasmic reticulum (ER) where its metabolic function is unclear. Because hepatic fatty acid partitioning is likely to require the interaction of ACSL1 with other specific proteins, we used an unbiased protein interaction technique, BioID, to discover ACSL1-binding partners in hepatocytes. We targeted ACSL1 either to the ER or to the OMM of Hepa 1–6 cells as a fusion protein with the Escherichia coli biotin ligase, BirA*. Proteomic analysis identified 98 proteins that specifically interacted with ACSL1 at the ER, 55 at the OMM, and 43 common to both subcellular locations. We found subsets of peroxisomal and lipid droplet proteins, tethering proteins, and vesicle proteins, uncovering a dynamic role for ACSL1 in organelle and lipid droplet interactions. Proteins involved in lipid metabolism were also identified, including acyl-CoA–binding proteins and ceramide synthase isoforms 2 and 5. Our results provide fundamental and detailed insights into protein interaction networks that control fatty acid metabolism.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.004049</identifier><identifier>PMID: 30190326</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acyl-CoA synthetase-1 ; Animals ; BioID ; ceramide synthase ; Coenzyme A Ligases - physiology ; Endoplasmic Reticulum - metabolism ; Fatty Acids - metabolism ; Female ; hepatocyte ; lipid droplet ; Lipids ; Liver - cytology ; Liver - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; mitochondria ; Mitochondria - metabolism ; peroxisome ; Protein Interaction Domains and Motifs ; protein–protein interaction ; SNAP23 ; β-oxidation</subject><ispartof>The Journal of biological chemistry, 2018-10, Vol.293 (43), p.16724-16740</ispartof><rights>2018 © 2018 Young et al.</rights><rights>2018 Young et al.</rights><rights>2018 Young et al. 2018 Young et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-a6577caa2c63e2df63cc08a7ab85ccee92b8ba87424e81eb4eb2c3ed2481be553</citedby><cites>FETCH-LOGICAL-c447t-a6577caa2c63e2df63cc08a7ab85ccee92b8ba87424e81eb4eb2c3ed2481be553</cites><orcidid>0000-0001-8168-0172 ; 0000-0003-4379-3824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204890/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204890/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30190326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Pamela A.</creatorcontrib><creatorcontrib>Senkal, Can E.</creatorcontrib><creatorcontrib>Suchanek, Amanda L.</creatorcontrib><creatorcontrib>Grevengoed, Trisha J.</creatorcontrib><creatorcontrib>Lin, Dennis D.</creatorcontrib><creatorcontrib>Zhao, Liyang</creatorcontrib><creatorcontrib>Crunk, Amanda E.</creatorcontrib><creatorcontrib>Klett, Eric L.</creatorcontrib><creatorcontrib>Füllekrug, Joachim</creatorcontrib><creatorcontrib>Obeid, Lina M.</creatorcontrib><creatorcontrib>Coleman, Rosalind A.</creatorcontrib><title>Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Fatty acid channeling into oxidation or storage modes depends on physiological conditions and hormonal signaling. However, the directionality of this channeling may also depend on the association of each of the five acyl-CoA synthetase isoforms with specific protein partners. Long-chain acyl-CoA synthetases (ACSLs) catalyze the conversion of long-chain fatty acids to fatty acyl-CoAs, which are then either oxidized or used in esterification reactions. In highly oxidative tissues, ACSL1 is located on the outer mitochondrial membrane (OMM) and directs fatty acids into mitochondria for β-oxidation. In the liver, however, about 50% of ACSL1 is located on the endoplasmic reticulum (ER) where its metabolic function is unclear. Because hepatic fatty acid partitioning is likely to require the interaction of ACSL1 with other specific proteins, we used an unbiased protein interaction technique, BioID, to discover ACSL1-binding partners in hepatocytes. We targeted ACSL1 either to the ER or to the OMM of Hepa 1–6 cells as a fusion protein with the Escherichia coli biotin ligase, BirA*. Proteomic analysis identified 98 proteins that specifically interacted with ACSL1 at the ER, 55 at the OMM, and 43 common to both subcellular locations. We found subsets of peroxisomal and lipid droplet proteins, tethering proteins, and vesicle proteins, uncovering a dynamic role for ACSL1 in organelle and lipid droplet interactions. Proteins involved in lipid metabolism were also identified, including acyl-CoA–binding proteins and ceramide synthase isoforms 2 and 5. Our results provide fundamental and detailed insights into protein interaction networks that control fatty acid metabolism.</description><subject>acyl-CoA synthetase-1</subject><subject>Animals</subject><subject>BioID</subject><subject>ceramide synthase</subject><subject>Coenzyme A Ligases - physiology</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Fatty Acids - metabolism</subject><subject>Female</subject><subject>hepatocyte</subject><subject>lipid droplet</subject><subject>Lipids</subject><subject>Liver - cytology</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>peroxisome</subject><subject>Protein Interaction Domains and Motifs</subject><subject>protein–protein interaction</subject><subject>SNAP23</subject><subject>β-oxidation</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUGP0zAQhS0EYruFOyfkI5cU23ESlwNSVQGLVAkJgcTNmkymGy-pXWK3qxz473jJsoIDPtiHee-N9T7GXkixkqLRr29aXH3eSGlWQmih14_YQgpTFmUlvz1mCyGULNaqMhfsMsYbkY9ey6fsohRyLUpVL9jPXfDXBfbgPAechmIbNjxOPvWUIBKX3PlEI2CK_Nalnn-niR_HkMj5yFMPKduSO0MiDr7jnRsJE99DSlOeuC7eBQTuHfbEezpCcsjz3d_CFJ-xJ3sYIj2_f5fs6_t3X7ZXxe7Th4_bza5ArZtUQF01DQIorEtS3b4uEYWBBlpTIRKtVWtaMI1WmoykVlOrsKROaSNbqqpyyd7OucdTe6AOyacRBnsc3QHGyQZw9t-Jd729DmdbK6FNrmrJXt0HjOHHiWKyBxeRhgE8hVO0SgqpGtlok6ViluIYYhxp_7BGCntHzWZq9jc1O1PLlpd_f-_B8AdTFryZBZRLOjsabURHHmmu23bB_T_9F-xIquU</recordid><startdate>20181026</startdate><enddate>20181026</enddate><creator>Young, Pamela A.</creator><creator>Senkal, Can E.</creator><creator>Suchanek, Amanda L.</creator><creator>Grevengoed, Trisha J.</creator><creator>Lin, Dennis D.</creator><creator>Zhao, Liyang</creator><creator>Crunk, Amanda E.</creator><creator>Klett, Eric L.</creator><creator>Füllekrug, Joachim</creator><creator>Obeid, Lina M.</creator><creator>Coleman, Rosalind A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8168-0172</orcidid><orcidid>https://orcid.org/0000-0003-4379-3824</orcidid></search><sort><creationdate>20181026</creationdate><title>Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways</title><author>Young, Pamela A. ; Senkal, Can E. ; Suchanek, Amanda L. ; Grevengoed, Trisha J. ; Lin, Dennis D. ; Zhao, Liyang ; Crunk, Amanda E. ; Klett, Eric L. ; Füllekrug, Joachim ; Obeid, Lina M. ; Coleman, Rosalind A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-a6577caa2c63e2df63cc08a7ab85ccee92b8ba87424e81eb4eb2c3ed2481be553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acyl-CoA synthetase-1</topic><topic>Animals</topic><topic>BioID</topic><topic>ceramide synthase</topic><topic>Coenzyme A Ligases - physiology</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Fatty Acids - metabolism</topic><topic>Female</topic><topic>hepatocyte</topic><topic>lipid droplet</topic><topic>Lipids</topic><topic>Liver - cytology</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>peroxisome</topic><topic>Protein Interaction Domains and Motifs</topic><topic>protein–protein interaction</topic><topic>SNAP23</topic><topic>β-oxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Pamela A.</creatorcontrib><creatorcontrib>Senkal, Can E.</creatorcontrib><creatorcontrib>Suchanek, Amanda L.</creatorcontrib><creatorcontrib>Grevengoed, Trisha J.</creatorcontrib><creatorcontrib>Lin, Dennis D.</creatorcontrib><creatorcontrib>Zhao, Liyang</creatorcontrib><creatorcontrib>Crunk, Amanda E.</creatorcontrib><creatorcontrib>Klett, Eric L.</creatorcontrib><creatorcontrib>Füllekrug, Joachim</creatorcontrib><creatorcontrib>Obeid, Lina M.</creatorcontrib><creatorcontrib>Coleman, Rosalind A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Pamela A.</au><au>Senkal, Can E.</au><au>Suchanek, Amanda L.</au><au>Grevengoed, Trisha J.</au><au>Lin, Dennis D.</au><au>Zhao, Liyang</au><au>Crunk, Amanda E.</au><au>Klett, Eric L.</au><au>Füllekrug, Joachim</au><au>Obeid, Lina M.</au><au>Coleman, Rosalind A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-10-26</date><risdate>2018</risdate><volume>293</volume><issue>43</issue><spage>16724</spage><epage>16740</epage><pages>16724-16740</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Fatty acid channeling into oxidation or storage modes depends on physiological conditions and hormonal signaling. However, the directionality of this channeling may also depend on the association of each of the five acyl-CoA synthetase isoforms with specific protein partners. Long-chain acyl-CoA synthetases (ACSLs) catalyze the conversion of long-chain fatty acids to fatty acyl-CoAs, which are then either oxidized or used in esterification reactions. In highly oxidative tissues, ACSL1 is located on the outer mitochondrial membrane (OMM) and directs fatty acids into mitochondria for β-oxidation. In the liver, however, about 50% of ACSL1 is located on the endoplasmic reticulum (ER) where its metabolic function is unclear. Because hepatic fatty acid partitioning is likely to require the interaction of ACSL1 with other specific proteins, we used an unbiased protein interaction technique, BioID, to discover ACSL1-binding partners in hepatocytes. We targeted ACSL1 either to the ER or to the OMM of Hepa 1–6 cells as a fusion protein with the Escherichia coli biotin ligase, BirA*. Proteomic analysis identified 98 proteins that specifically interacted with ACSL1 at the ER, 55 at the OMM, and 43 common to both subcellular locations. We found subsets of peroxisomal and lipid droplet proteins, tethering proteins, and vesicle proteins, uncovering a dynamic role for ACSL1 in organelle and lipid droplet interactions. Proteins involved in lipid metabolism were also identified, including acyl-CoA–binding proteins and ceramide synthase isoforms 2 and 5. Our results provide fundamental and detailed insights into protein interaction networks that control fatty acid metabolism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30190326</pmid><doi>10.1074/jbc.RA118.004049</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8168-0172</orcidid><orcidid>https://orcid.org/0000-0003-4379-3824</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2018-10, Vol.293 (43), p.16724-16740
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6204890
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects acyl-CoA synthetase-1
Animals
BioID
ceramide synthase
Coenzyme A Ligases - physiology
Endoplasmic Reticulum - metabolism
Fatty Acids - metabolism
Female
hepatocyte
lipid droplet
Lipids
Liver - cytology
Liver - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
mitochondria
Mitochondria - metabolism
peroxisome
Protein Interaction Domains and Motifs
protein–protein interaction
SNAP23
β-oxidation
title Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-chain%20acyl-CoA%20synthetase%201%20interacts%20with%20key%20proteins%20that%20activate%20and%20direct%20fatty%20acids%20into%20niche%20hepatic%20pathways&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Young,%20Pamela%20A.&rft.date=2018-10-26&rft.volume=293&rft.issue=43&rft.spage=16724&rft.epage=16740&rft.pages=16724-16740&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.004049&rft_dat=%3Cproquest_pubme%3E2101271748%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101271748&rft_id=info:pmid/30190326&rft_els_id=S0021925820332361&rfr_iscdi=true