Reducing protein oxidation reverses lung fibrosis

Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death 1 – 3 . Oxidative stress is believed to be critical in this disease pathogenesis 4 – 6 , although the exact mechanisms remain enigmatic. Protein S -g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2018-08, Vol.24 (8), p.1128-1135
Hauptverfasser: Anathy, Vikas, Lahue, Karolyn G., Chapman, David G., Chia, Shi B., Casey, Dylan T., Aboushousha, Reem, van der Velden, Jos L. J., Elko, Evan, Hoffman, Sidra M., McMillan, David H., Jones, Jane T., Nolin, James D., Abdalla, Sarah, Schneider, Robert, Seward, David J., Roberson, Elle C., Liptak, Matthew D., Cousins, Morgan E., Butnor, Kelly J., Taatjes, Douglas. J., Budd, Ralph C., Irvin, Charles G., Ho, Ye-Shih, Hakem, Razq, Brown, Kevin K., Matsui, Reiko, Bachschmid, Markus M., Gomez, Jose L., Kaminski, Naftali, van der Vliet, Albert, Janssen-Heininger, Yvonne M. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1135
container_issue 8
container_start_page 1128
container_title Nature medicine
container_volume 24
creator Anathy, Vikas
Lahue, Karolyn G.
Chapman, David G.
Chia, Shi B.
Casey, Dylan T.
Aboushousha, Reem
van der Velden, Jos L. J.
Elko, Evan
Hoffman, Sidra M.
McMillan, David H.
Jones, Jane T.
Nolin, James D.
Abdalla, Sarah
Schneider, Robert
Seward, David J.
Roberson, Elle C.
Liptak, Matthew D.
Cousins, Morgan E.
Butnor, Kelly J.
Taatjes, Douglas. J.
Budd, Ralph C.
Irvin, Charles G.
Ho, Ye-Shih
Hakem, Razq
Brown, Kevin K.
Matsui, Reiko
Bachschmid, Markus M.
Gomez, Jose L.
Kaminski, Naftali
van der Vliet, Albert
Janssen-Heininger, Yvonne M. W.
description Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death 1 – 3 . Oxidative stress is believed to be critical in this disease pathogenesis 4 – 6 , although the exact mechanisms remain enigmatic. Protein S -glutathionylation (PSSG) is a post-translational modification of proteins that can be reversed by glutaredoxin-1 (GLRX) 7 . It remains unknown whether GLRX and PSSG play a role in lung fibrosis. Here, we explored the impact of GLRX and PSSG status on the pathogenesis of pulmonary fibrosis, using lung tissues from subjects with idiopathic pulmonary fibrosis, transgenic mouse models and direct administration of recombinant Glrx to airways of mice with existing fibrosis. We demonstrate that GLRX enzymatic activity was strongly decreased in fibrotic lungs, in accordance with increases in PSSG. Mice lacking Glrx were far more susceptible to bleomycin- or adenovirus encoding active transforming growth factor beta-1 (AdTGFB1)-induced pulmonary fibrosis, whereas transgenic overexpression of Glrx in the lung epithelium attenuated fibrosis. We furthermore show that endogenous GLRX was inactivated through an oxidative mechanism and that direct administration of the Glrx protein into airways augmented Glrx activity and reversed increases in collagen in mice with TGFB1- or bleomycin-induced fibrosis, even when administered to fibrotic, aged animals. Collectively, these findings suggest the therapeutic potential of exogenous GLRX in treating lung fibrosis. Targeting a post-translational modification of Fas by recombinant Glrx reverses established lung fibrosis in a mouse model of age-related idiopathic pulmonary fibrosis.
doi_str_mv 10.1038/s41591-018-0090-y
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6204256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572757803</galeid><sourcerecordid>A572757803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-3bba8dfe6ce1083a32ca310d694d39017b007fa25cd51ce7b042ac9e0b98aacb3</originalsourceid><addsrcrecordid>eNqNkktr3DAUhU1paR7tD-imDBQKWSi9kixb2hRC6CMQCKQPuhOyfO1R8EhTyQ6Zf18NkyYxTKFoocf9zpHQPUXxhsIpBS4_pJIKRQlQSQAUkM2z4pCKsiK0hl_P8xpqSaQS1UFxlNINAHAQ6mVxwJSSkrLqsKDX2E7W-X6xjmFE5xfhzrVmdMEvIt5iTJgWw5TrnWtiSC69Kl50Zkj4-n4-Ln58_vT9_Cu5vPpycX52SWxVlyPhTWNk22FlkYLkhjNrOIW2UmXLFdC6Aag7w4RtBbWYtyUzViE0ShpjG35cfNz5rqdmha1FP0Yz6HV0KxM3Ohin5xXvlroPt7pi2UpU2eDdvUEMvydMo74JU_T5zZqBLBWAVPyR6s2A2vkuZDO7csnqM1GzWtQSthTZQ_XoMd8cPHYuH8_40z18Hi2unN0rOJkJMjPi3dibKSV98e36_9mrn3P2_RN2iWYYlykM07bBaQ7SHWhzl1PE7uGnKeht2vQubTqnTW_TpjdZ8_Zpix4Uf-OVAbYDUi75HuNjC_7t-gc2m900</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084900893</pqid></control><display><type>article</type><title>Reducing protein oxidation reverses lung fibrosis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Anathy, Vikas ; Lahue, Karolyn G. ; Chapman, David G. ; Chia, Shi B. ; Casey, Dylan T. ; Aboushousha, Reem ; van der Velden, Jos L. J. ; Elko, Evan ; Hoffman, Sidra M. ; McMillan, David H. ; Jones, Jane T. ; Nolin, James D. ; Abdalla, Sarah ; Schneider, Robert ; Seward, David J. ; Roberson, Elle C. ; Liptak, Matthew D. ; Cousins, Morgan E. ; Butnor, Kelly J. ; Taatjes, Douglas. J. ; Budd, Ralph C. ; Irvin, Charles G. ; Ho, Ye-Shih ; Hakem, Razq ; Brown, Kevin K. ; Matsui, Reiko ; Bachschmid, Markus M. ; Gomez, Jose L. ; Kaminski, Naftali ; van der Vliet, Albert ; Janssen-Heininger, Yvonne M. W.</creator><creatorcontrib>Anathy, Vikas ; Lahue, Karolyn G. ; Chapman, David G. ; Chia, Shi B. ; Casey, Dylan T. ; Aboushousha, Reem ; van der Velden, Jos L. J. ; Elko, Evan ; Hoffman, Sidra M. ; McMillan, David H. ; Jones, Jane T. ; Nolin, James D. ; Abdalla, Sarah ; Schneider, Robert ; Seward, David J. ; Roberson, Elle C. ; Liptak, Matthew D. ; Cousins, Morgan E. ; Butnor, Kelly J. ; Taatjes, Douglas. J. ; Budd, Ralph C. ; Irvin, Charles G. ; Ho, Ye-Shih ; Hakem, Razq ; Brown, Kevin K. ; Matsui, Reiko ; Bachschmid, Markus M. ; Gomez, Jose L. ; Kaminski, Naftali ; van der Vliet, Albert ; Janssen-Heininger, Yvonne M. W.</creatorcontrib><description>Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death 1 – 3 . Oxidative stress is believed to be critical in this disease pathogenesis 4 – 6 , although the exact mechanisms remain enigmatic. Protein S -glutathionylation (PSSG) is a post-translational modification of proteins that can be reversed by glutaredoxin-1 (GLRX) 7 . It remains unknown whether GLRX and PSSG play a role in lung fibrosis. Here, we explored the impact of GLRX and PSSG status on the pathogenesis of pulmonary fibrosis, using lung tissues from subjects with idiopathic pulmonary fibrosis, transgenic mouse models and direct administration of recombinant Glrx to airways of mice with existing fibrosis. We demonstrate that GLRX enzymatic activity was strongly decreased in fibrotic lungs, in accordance with increases in PSSG. Mice lacking Glrx were far more susceptible to bleomycin- or adenovirus encoding active transforming growth factor beta-1 (AdTGFB1)-induced pulmonary fibrosis, whereas transgenic overexpression of Glrx in the lung epithelium attenuated fibrosis. We furthermore show that endogenous GLRX was inactivated through an oxidative mechanism and that direct administration of the Glrx protein into airways augmented Glrx activity and reversed increases in collagen in mice with TGFB1- or bleomycin-induced fibrosis, even when administered to fibrotic, aged animals. Collectively, these findings suggest the therapeutic potential of exogenous GLRX in treating lung fibrosis. Targeting a post-translational modification of Fas by recombinant Glrx reverses established lung fibrosis in a mouse model of age-related idiopathic pulmonary fibrosis.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-018-0090-y</identifier><identifier>PMID: 29988126</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>692/699 ; 692/699/1785 ; Adenoviruses ; Animal models ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Bleomycin ; Cancer Research ; Collagen ; Enzymatic activity ; Enzymes ; Epithelium ; Female ; Fibrosis ; Gas exchange ; Genetic engineering ; Glutaredoxin ; Glutaredoxins - metabolism ; Glutathione - metabolism ; Growth factors ; Health aspects ; Idiopathic Pulmonary Fibrosis - metabolism ; Idiopathic Pulmonary Fibrosis - pathology ; Infectious Diseases ; Laboratory rats ; Letter ; Lung - pathology ; Lung diseases ; Lungs ; Medical schools ; Metabolic Diseases ; Mice, Inbred C57BL ; Mice, Transgenic ; Molecular Medicine ; Neurosciences ; Oxidation ; Oxidation-Reduction ; Oxidation-reduction reactions ; Oxidative stress ; Pathogenesis ; Patient outcomes ; Post-translation ; Post-translational modifications ; Protein S ; Proteins ; Proteins - metabolism ; Pulmonary fibrosis ; Respiratory tract diseases ; Risk factors ; Rodents ; Transforming growth factor-b1 ; Transgenic mice</subject><ispartof>Nature medicine, 2018-08, Vol.24 (8), p.1128-1135</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-3bba8dfe6ce1083a32ca310d694d39017b007fa25cd51ce7b042ac9e0b98aacb3</citedby><cites>FETCH-LOGICAL-c674t-3bba8dfe6ce1083a32ca310d694d39017b007fa25cd51ce7b042ac9e0b98aacb3</cites><orcidid>0000-0002-8211-1817 ; 0000-0001-5917-4601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-018-0090-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-018-0090-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29988126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anathy, Vikas</creatorcontrib><creatorcontrib>Lahue, Karolyn G.</creatorcontrib><creatorcontrib>Chapman, David G.</creatorcontrib><creatorcontrib>Chia, Shi B.</creatorcontrib><creatorcontrib>Casey, Dylan T.</creatorcontrib><creatorcontrib>Aboushousha, Reem</creatorcontrib><creatorcontrib>van der Velden, Jos L. J.</creatorcontrib><creatorcontrib>Elko, Evan</creatorcontrib><creatorcontrib>Hoffman, Sidra M.</creatorcontrib><creatorcontrib>McMillan, David H.</creatorcontrib><creatorcontrib>Jones, Jane T.</creatorcontrib><creatorcontrib>Nolin, James D.</creatorcontrib><creatorcontrib>Abdalla, Sarah</creatorcontrib><creatorcontrib>Schneider, Robert</creatorcontrib><creatorcontrib>Seward, David J.</creatorcontrib><creatorcontrib>Roberson, Elle C.</creatorcontrib><creatorcontrib>Liptak, Matthew D.</creatorcontrib><creatorcontrib>Cousins, Morgan E.</creatorcontrib><creatorcontrib>Butnor, Kelly J.</creatorcontrib><creatorcontrib>Taatjes, Douglas. J.</creatorcontrib><creatorcontrib>Budd, Ralph C.</creatorcontrib><creatorcontrib>Irvin, Charles G.</creatorcontrib><creatorcontrib>Ho, Ye-Shih</creatorcontrib><creatorcontrib>Hakem, Razq</creatorcontrib><creatorcontrib>Brown, Kevin K.</creatorcontrib><creatorcontrib>Matsui, Reiko</creatorcontrib><creatorcontrib>Bachschmid, Markus M.</creatorcontrib><creatorcontrib>Gomez, Jose L.</creatorcontrib><creatorcontrib>Kaminski, Naftali</creatorcontrib><creatorcontrib>van der Vliet, Albert</creatorcontrib><creatorcontrib>Janssen-Heininger, Yvonne M. W.</creatorcontrib><title>Reducing protein oxidation reverses lung fibrosis</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death 1 – 3 . Oxidative stress is believed to be critical in this disease pathogenesis 4 – 6 , although the exact mechanisms remain enigmatic. Protein S -glutathionylation (PSSG) is a post-translational modification of proteins that can be reversed by glutaredoxin-1 (GLRX) 7 . It remains unknown whether GLRX and PSSG play a role in lung fibrosis. Here, we explored the impact of GLRX and PSSG status on the pathogenesis of pulmonary fibrosis, using lung tissues from subjects with idiopathic pulmonary fibrosis, transgenic mouse models and direct administration of recombinant Glrx to airways of mice with existing fibrosis. We demonstrate that GLRX enzymatic activity was strongly decreased in fibrotic lungs, in accordance with increases in PSSG. Mice lacking Glrx were far more susceptible to bleomycin- or adenovirus encoding active transforming growth factor beta-1 (AdTGFB1)-induced pulmonary fibrosis, whereas transgenic overexpression of Glrx in the lung epithelium attenuated fibrosis. We furthermore show that endogenous GLRX was inactivated through an oxidative mechanism and that direct administration of the Glrx protein into airways augmented Glrx activity and reversed increases in collagen in mice with TGFB1- or bleomycin-induced fibrosis, even when administered to fibrotic, aged animals. Collectively, these findings suggest the therapeutic potential of exogenous GLRX in treating lung fibrosis. Targeting a post-translational modification of Fas by recombinant Glrx reverses established lung fibrosis in a mouse model of age-related idiopathic pulmonary fibrosis.</description><subject>692/699</subject><subject>692/699/1785</subject><subject>Adenoviruses</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bleomycin</subject><subject>Cancer Research</subject><subject>Collagen</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Epithelium</subject><subject>Female</subject><subject>Fibrosis</subject><subject>Gas exchange</subject><subject>Genetic engineering</subject><subject>Glutaredoxin</subject><subject>Glutaredoxins - metabolism</subject><subject>Glutathione - metabolism</subject><subject>Growth factors</subject><subject>Health aspects</subject><subject>Idiopathic Pulmonary Fibrosis - metabolism</subject><subject>Idiopathic Pulmonary Fibrosis - pathology</subject><subject>Infectious Diseases</subject><subject>Laboratory rats</subject><subject>Letter</subject><subject>Lung - pathology</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Medical schools</subject><subject>Metabolic Diseases</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidation-reduction reactions</subject><subject>Oxidative stress</subject><subject>Pathogenesis</subject><subject>Patient outcomes</subject><subject>Post-translation</subject><subject>Post-translational modifications</subject><subject>Protein S</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Pulmonary fibrosis</subject><subject>Respiratory tract diseases</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>Transforming growth factor-b1</subject><subject>Transgenic mice</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkktr3DAUhU1paR7tD-imDBQKWSi9kixb2hRC6CMQCKQPuhOyfO1R8EhTyQ6Zf18NkyYxTKFoocf9zpHQPUXxhsIpBS4_pJIKRQlQSQAUkM2z4pCKsiK0hl_P8xpqSaQS1UFxlNINAHAQ6mVxwJSSkrLqsKDX2E7W-X6xjmFE5xfhzrVmdMEvIt5iTJgWw5TrnWtiSC69Kl50Zkj4-n4-Ln58_vT9_Cu5vPpycX52SWxVlyPhTWNk22FlkYLkhjNrOIW2UmXLFdC6Aag7w4RtBbWYtyUzViE0ShpjG35cfNz5rqdmha1FP0Yz6HV0KxM3Ohin5xXvlroPt7pi2UpU2eDdvUEMvydMo74JU_T5zZqBLBWAVPyR6s2A2vkuZDO7csnqM1GzWtQSthTZQ_XoMd8cPHYuH8_40z18Hi2unN0rOJkJMjPi3dibKSV98e36_9mrn3P2_RN2iWYYlykM07bBaQ7SHWhzl1PE7uGnKeht2vQubTqnTW_TpjdZ8_Zpix4Uf-OVAbYDUi75HuNjC_7t-gc2m900</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Anathy, Vikas</creator><creator>Lahue, Karolyn G.</creator><creator>Chapman, David G.</creator><creator>Chia, Shi B.</creator><creator>Casey, Dylan T.</creator><creator>Aboushousha, Reem</creator><creator>van der Velden, Jos L. J.</creator><creator>Elko, Evan</creator><creator>Hoffman, Sidra M.</creator><creator>McMillan, David H.</creator><creator>Jones, Jane T.</creator><creator>Nolin, James D.</creator><creator>Abdalla, Sarah</creator><creator>Schneider, Robert</creator><creator>Seward, David J.</creator><creator>Roberson, Elle C.</creator><creator>Liptak, Matthew D.</creator><creator>Cousins, Morgan E.</creator><creator>Butnor, Kelly J.</creator><creator>Taatjes, Douglas. J.</creator><creator>Budd, Ralph C.</creator><creator>Irvin, Charles G.</creator><creator>Ho, Ye-Shih</creator><creator>Hakem, Razq</creator><creator>Brown, Kevin K.</creator><creator>Matsui, Reiko</creator><creator>Bachschmid, Markus M.</creator><creator>Gomez, Jose L.</creator><creator>Kaminski, Naftali</creator><creator>van der Vliet, Albert</creator><creator>Janssen-Heininger, Yvonne M. W.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8211-1817</orcidid><orcidid>https://orcid.org/0000-0001-5917-4601</orcidid></search><sort><creationdate>20180801</creationdate><title>Reducing protein oxidation reverses lung fibrosis</title><author>Anathy, Vikas ; Lahue, Karolyn G. ; Chapman, David G. ; Chia, Shi B. ; Casey, Dylan T. ; Aboushousha, Reem ; van der Velden, Jos L. J. ; Elko, Evan ; Hoffman, Sidra M. ; McMillan, David H. ; Jones, Jane T. ; Nolin, James D. ; Abdalla, Sarah ; Schneider, Robert ; Seward, David J. ; Roberson, Elle C. ; Liptak, Matthew D. ; Cousins, Morgan E. ; Butnor, Kelly J. ; Taatjes, Douglas. J. ; Budd, Ralph C. ; Irvin, Charles G. ; Ho, Ye-Shih ; Hakem, Razq ; Brown, Kevin K. ; Matsui, Reiko ; Bachschmid, Markus M. ; Gomez, Jose L. ; Kaminski, Naftali ; van der Vliet, Albert ; Janssen-Heininger, Yvonne M. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-3bba8dfe6ce1083a32ca310d694d39017b007fa25cd51ce7b042ac9e0b98aacb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>692/699</topic><topic>692/699/1785</topic><topic>Adenoviruses</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bleomycin</topic><topic>Cancer Research</topic><topic>Collagen</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Epithelium</topic><topic>Female</topic><topic>Fibrosis</topic><topic>Gas exchange</topic><topic>Genetic engineering</topic><topic>Glutaredoxin</topic><topic>Glutaredoxins - metabolism</topic><topic>Glutathione - metabolism</topic><topic>Growth factors</topic><topic>Health aspects</topic><topic>Idiopathic Pulmonary Fibrosis - metabolism</topic><topic>Idiopathic Pulmonary Fibrosis - pathology</topic><topic>Infectious Diseases</topic><topic>Laboratory rats</topic><topic>Letter</topic><topic>Lung - pathology</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Medical schools</topic><topic>Metabolic Diseases</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidation-reduction reactions</topic><topic>Oxidative stress</topic><topic>Pathogenesis</topic><topic>Patient outcomes</topic><topic>Post-translation</topic><topic>Post-translational modifications</topic><topic>Protein S</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Pulmonary fibrosis</topic><topic>Respiratory tract diseases</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>Transforming growth factor-b1</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anathy, Vikas</creatorcontrib><creatorcontrib>Lahue, Karolyn G.</creatorcontrib><creatorcontrib>Chapman, David G.</creatorcontrib><creatorcontrib>Chia, Shi B.</creatorcontrib><creatorcontrib>Casey, Dylan T.</creatorcontrib><creatorcontrib>Aboushousha, Reem</creatorcontrib><creatorcontrib>van der Velden, Jos L. J.</creatorcontrib><creatorcontrib>Elko, Evan</creatorcontrib><creatorcontrib>Hoffman, Sidra M.</creatorcontrib><creatorcontrib>McMillan, David H.</creatorcontrib><creatorcontrib>Jones, Jane T.</creatorcontrib><creatorcontrib>Nolin, James D.</creatorcontrib><creatorcontrib>Abdalla, Sarah</creatorcontrib><creatorcontrib>Schneider, Robert</creatorcontrib><creatorcontrib>Seward, David J.</creatorcontrib><creatorcontrib>Roberson, Elle C.</creatorcontrib><creatorcontrib>Liptak, Matthew D.</creatorcontrib><creatorcontrib>Cousins, Morgan E.</creatorcontrib><creatorcontrib>Butnor, Kelly J.</creatorcontrib><creatorcontrib>Taatjes, Douglas. J.</creatorcontrib><creatorcontrib>Budd, Ralph C.</creatorcontrib><creatorcontrib>Irvin, Charles G.</creatorcontrib><creatorcontrib>Ho, Ye-Shih</creatorcontrib><creatorcontrib>Hakem, Razq</creatorcontrib><creatorcontrib>Brown, Kevin K.</creatorcontrib><creatorcontrib>Matsui, Reiko</creatorcontrib><creatorcontrib>Bachschmid, Markus M.</creatorcontrib><creatorcontrib>Gomez, Jose L.</creatorcontrib><creatorcontrib>Kaminski, Naftali</creatorcontrib><creatorcontrib>van der Vliet, Albert</creatorcontrib><creatorcontrib>Janssen-Heininger, Yvonne M. W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anathy, Vikas</au><au>Lahue, Karolyn G.</au><au>Chapman, David G.</au><au>Chia, Shi B.</au><au>Casey, Dylan T.</au><au>Aboushousha, Reem</au><au>van der Velden, Jos L. J.</au><au>Elko, Evan</au><au>Hoffman, Sidra M.</au><au>McMillan, David H.</au><au>Jones, Jane T.</au><au>Nolin, James D.</au><au>Abdalla, Sarah</au><au>Schneider, Robert</au><au>Seward, David J.</au><au>Roberson, Elle C.</au><au>Liptak, Matthew D.</au><au>Cousins, Morgan E.</au><au>Butnor, Kelly J.</au><au>Taatjes, Douglas. J.</au><au>Budd, Ralph C.</au><au>Irvin, Charles G.</au><au>Ho, Ye-Shih</au><au>Hakem, Razq</au><au>Brown, Kevin K.</au><au>Matsui, Reiko</au><au>Bachschmid, Markus M.</au><au>Gomez, Jose L.</au><au>Kaminski, Naftali</au><au>van der Vliet, Albert</au><au>Janssen-Heininger, Yvonne M. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing protein oxidation reverses lung fibrosis</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>24</volume><issue>8</issue><spage>1128</spage><epage>1135</epage><pages>1128-1135</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death 1 – 3 . Oxidative stress is believed to be critical in this disease pathogenesis 4 – 6 , although the exact mechanisms remain enigmatic. Protein S -glutathionylation (PSSG) is a post-translational modification of proteins that can be reversed by glutaredoxin-1 (GLRX) 7 . It remains unknown whether GLRX and PSSG play a role in lung fibrosis. Here, we explored the impact of GLRX and PSSG status on the pathogenesis of pulmonary fibrosis, using lung tissues from subjects with idiopathic pulmonary fibrosis, transgenic mouse models and direct administration of recombinant Glrx to airways of mice with existing fibrosis. We demonstrate that GLRX enzymatic activity was strongly decreased in fibrotic lungs, in accordance with increases in PSSG. Mice lacking Glrx were far more susceptible to bleomycin- or adenovirus encoding active transforming growth factor beta-1 (AdTGFB1)-induced pulmonary fibrosis, whereas transgenic overexpression of Glrx in the lung epithelium attenuated fibrosis. We furthermore show that endogenous GLRX was inactivated through an oxidative mechanism and that direct administration of the Glrx protein into airways augmented Glrx activity and reversed increases in collagen in mice with TGFB1- or bleomycin-induced fibrosis, even when administered to fibrotic, aged animals. Collectively, these findings suggest the therapeutic potential of exogenous GLRX in treating lung fibrosis. Targeting a post-translational modification of Fas by recombinant Glrx reverses established lung fibrosis in a mouse model of age-related idiopathic pulmonary fibrosis.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29988126</pmid><doi>10.1038/s41591-018-0090-y</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8211-1817</orcidid><orcidid>https://orcid.org/0000-0001-5917-4601</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2018-08, Vol.24 (8), p.1128-1135
issn 1078-8956
1546-170X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6204256
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 692/699
692/699/1785
Adenoviruses
Animal models
Animals
Biomedical and Life Sciences
Biomedicine
Bleomycin
Cancer Research
Collagen
Enzymatic activity
Enzymes
Epithelium
Female
Fibrosis
Gas exchange
Genetic engineering
Glutaredoxin
Glutaredoxins - metabolism
Glutathione - metabolism
Growth factors
Health aspects
Idiopathic Pulmonary Fibrosis - metabolism
Idiopathic Pulmonary Fibrosis - pathology
Infectious Diseases
Laboratory rats
Letter
Lung - pathology
Lung diseases
Lungs
Medical schools
Metabolic Diseases
Mice, Inbred C57BL
Mice, Transgenic
Molecular Medicine
Neurosciences
Oxidation
Oxidation-Reduction
Oxidation-reduction reactions
Oxidative stress
Pathogenesis
Patient outcomes
Post-translation
Post-translational modifications
Protein S
Proteins
Proteins - metabolism
Pulmonary fibrosis
Respiratory tract diseases
Risk factors
Rodents
Transforming growth factor-b1
Transgenic mice
title Reducing protein oxidation reverses lung fibrosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20protein%20oxidation%20reverses%20lung%20fibrosis&rft.jtitle=Nature%20medicine&rft.au=Anathy,%20Vikas&rft.date=2018-08-01&rft.volume=24&rft.issue=8&rft.spage=1128&rft.epage=1135&rft.pages=1128-1135&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-018-0090-y&rft_dat=%3Cgale_pubme%3EA572757803%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084900893&rft_id=info:pmid/29988126&rft_galeid=A572757803&rfr_iscdi=true