Reducing protein oxidation reverses lung fibrosis
Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death 1 – 3 . Oxidative stress is believed to be critical in this disease pathogenesis 4 – 6 , although the exact mechanisms remain enigmatic. Protein S -g...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2018-08, Vol.24 (8), p.1128-1135 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1135 |
---|---|
container_issue | 8 |
container_start_page | 1128 |
container_title | Nature medicine |
container_volume | 24 |
creator | Anathy, Vikas Lahue, Karolyn G. Chapman, David G. Chia, Shi B. Casey, Dylan T. Aboushousha, Reem van der Velden, Jos L. J. Elko, Evan Hoffman, Sidra M. McMillan, David H. Jones, Jane T. Nolin, James D. Abdalla, Sarah Schneider, Robert Seward, David J. Roberson, Elle C. Liptak, Matthew D. Cousins, Morgan E. Butnor, Kelly J. Taatjes, Douglas. J. Budd, Ralph C. Irvin, Charles G. Ho, Ye-Shih Hakem, Razq Brown, Kevin K. Matsui, Reiko Bachschmid, Markus M. Gomez, Jose L. Kaminski, Naftali van der Vliet, Albert Janssen-Heininger, Yvonne M. W. |
description | Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death
1
–
3
. Oxidative stress is believed to be critical in this disease pathogenesis
4
–
6
, although the exact mechanisms remain enigmatic. Protein
S
-glutathionylation (PSSG) is a post-translational modification of proteins that can be reversed by glutaredoxin-1 (GLRX)
7
. It remains unknown whether GLRX and PSSG play a role in lung fibrosis. Here, we explored the impact of GLRX and PSSG status on the pathogenesis of pulmonary fibrosis, using lung tissues from subjects with idiopathic pulmonary fibrosis, transgenic mouse models and direct administration of recombinant Glrx to airways of mice with existing fibrosis. We demonstrate that GLRX enzymatic activity was strongly decreased in fibrotic lungs, in accordance with increases in PSSG. Mice lacking
Glrx
were far more susceptible to bleomycin- or adenovirus encoding active transforming growth factor beta-1 (AdTGFB1)-induced pulmonary fibrosis, whereas transgenic overexpression of
Glrx
in the lung epithelium attenuated fibrosis. We furthermore show that endogenous GLRX was inactivated through an oxidative mechanism and that direct administration of the Glrx protein into airways augmented Glrx activity and reversed increases in collagen in mice with TGFB1- or bleomycin-induced fibrosis, even when administered to fibrotic, aged animals. Collectively, these findings suggest the therapeutic potential of exogenous GLRX in treating lung fibrosis.
Targeting a post-translational modification of Fas by recombinant Glrx reverses established lung fibrosis in a mouse model of age-related idiopathic pulmonary fibrosis. |
doi_str_mv | 10.1038/s41591-018-0090-y |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6204256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572757803</galeid><sourcerecordid>A572757803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-3bba8dfe6ce1083a32ca310d694d39017b007fa25cd51ce7b042ac9e0b98aacb3</originalsourceid><addsrcrecordid>eNqNkktr3DAUhU1paR7tD-imDBQKWSi9kixb2hRC6CMQCKQPuhOyfO1R8EhTyQ6Zf18NkyYxTKFoocf9zpHQPUXxhsIpBS4_pJIKRQlQSQAUkM2z4pCKsiK0hl_P8xpqSaQS1UFxlNINAHAQ6mVxwJSSkrLqsKDX2E7W-X6xjmFE5xfhzrVmdMEvIt5iTJgWw5TrnWtiSC69Kl50Zkj4-n4-Ln58_vT9_Cu5vPpycX52SWxVlyPhTWNk22FlkYLkhjNrOIW2UmXLFdC6Aag7w4RtBbWYtyUzViE0ShpjG35cfNz5rqdmha1FP0Yz6HV0KxM3Ohin5xXvlroPt7pi2UpU2eDdvUEMvydMo74JU_T5zZqBLBWAVPyR6s2A2vkuZDO7csnqM1GzWtQSthTZQ_XoMd8cPHYuH8_40z18Hi2unN0rOJkJMjPi3dibKSV98e36_9mrn3P2_RN2iWYYlykM07bBaQ7SHWhzl1PE7uGnKeht2vQubTqnTW_TpjdZ8_Zpix4Uf-OVAbYDUi75HuNjC_7t-gc2m900</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084900893</pqid></control><display><type>article</type><title>Reducing protein oxidation reverses lung fibrosis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Anathy, Vikas ; Lahue, Karolyn G. ; Chapman, David G. ; Chia, Shi B. ; Casey, Dylan T. ; Aboushousha, Reem ; van der Velden, Jos L. J. ; Elko, Evan ; Hoffman, Sidra M. ; McMillan, David H. ; Jones, Jane T. ; Nolin, James D. ; Abdalla, Sarah ; Schneider, Robert ; Seward, David J. ; Roberson, Elle C. ; Liptak, Matthew D. ; Cousins, Morgan E. ; Butnor, Kelly J. ; Taatjes, Douglas. J. ; Budd, Ralph C. ; Irvin, Charles G. ; Ho, Ye-Shih ; Hakem, Razq ; Brown, Kevin K. ; Matsui, Reiko ; Bachschmid, Markus M. ; Gomez, Jose L. ; Kaminski, Naftali ; van der Vliet, Albert ; Janssen-Heininger, Yvonne M. W.</creator><creatorcontrib>Anathy, Vikas ; Lahue, Karolyn G. ; Chapman, David G. ; Chia, Shi B. ; Casey, Dylan T. ; Aboushousha, Reem ; van der Velden, Jos L. J. ; Elko, Evan ; Hoffman, Sidra M. ; McMillan, David H. ; Jones, Jane T. ; Nolin, James D. ; Abdalla, Sarah ; Schneider, Robert ; Seward, David J. ; Roberson, Elle C. ; Liptak, Matthew D. ; Cousins, Morgan E. ; Butnor, Kelly J. ; Taatjes, Douglas. J. ; Budd, Ralph C. ; Irvin, Charles G. ; Ho, Ye-Shih ; Hakem, Razq ; Brown, Kevin K. ; Matsui, Reiko ; Bachschmid, Markus M. ; Gomez, Jose L. ; Kaminski, Naftali ; van der Vliet, Albert ; Janssen-Heininger, Yvonne M. W.</creatorcontrib><description>Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death
1
–
3
. Oxidative stress is believed to be critical in this disease pathogenesis
4
–
6
, although the exact mechanisms remain enigmatic. Protein
S
-glutathionylation (PSSG) is a post-translational modification of proteins that can be reversed by glutaredoxin-1 (GLRX)
7
. It remains unknown whether GLRX and PSSG play a role in lung fibrosis. Here, we explored the impact of GLRX and PSSG status on the pathogenesis of pulmonary fibrosis, using lung tissues from subjects with idiopathic pulmonary fibrosis, transgenic mouse models and direct administration of recombinant Glrx to airways of mice with existing fibrosis. We demonstrate that GLRX enzymatic activity was strongly decreased in fibrotic lungs, in accordance with increases in PSSG. Mice lacking
Glrx
were far more susceptible to bleomycin- or adenovirus encoding active transforming growth factor beta-1 (AdTGFB1)-induced pulmonary fibrosis, whereas transgenic overexpression of
Glrx
in the lung epithelium attenuated fibrosis. We furthermore show that endogenous GLRX was inactivated through an oxidative mechanism and that direct administration of the Glrx protein into airways augmented Glrx activity and reversed increases in collagen in mice with TGFB1- or bleomycin-induced fibrosis, even when administered to fibrotic, aged animals. Collectively, these findings suggest the therapeutic potential of exogenous GLRX in treating lung fibrosis.
Targeting a post-translational modification of Fas by recombinant Glrx reverses established lung fibrosis in a mouse model of age-related idiopathic pulmonary fibrosis.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-018-0090-y</identifier><identifier>PMID: 29988126</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>692/699 ; 692/699/1785 ; Adenoviruses ; Animal models ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Bleomycin ; Cancer Research ; Collagen ; Enzymatic activity ; Enzymes ; Epithelium ; Female ; Fibrosis ; Gas exchange ; Genetic engineering ; Glutaredoxin ; Glutaredoxins - metabolism ; Glutathione - metabolism ; Growth factors ; Health aspects ; Idiopathic Pulmonary Fibrosis - metabolism ; Idiopathic Pulmonary Fibrosis - pathology ; Infectious Diseases ; Laboratory rats ; Letter ; Lung - pathology ; Lung diseases ; Lungs ; Medical schools ; Metabolic Diseases ; Mice, Inbred C57BL ; Mice, Transgenic ; Molecular Medicine ; Neurosciences ; Oxidation ; Oxidation-Reduction ; Oxidation-reduction reactions ; Oxidative stress ; Pathogenesis ; Patient outcomes ; Post-translation ; Post-translational modifications ; Protein S ; Proteins ; Proteins - metabolism ; Pulmonary fibrosis ; Respiratory tract diseases ; Risk factors ; Rodents ; Transforming growth factor-b1 ; Transgenic mice</subject><ispartof>Nature medicine, 2018-08, Vol.24 (8), p.1128-1135</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-3bba8dfe6ce1083a32ca310d694d39017b007fa25cd51ce7b042ac9e0b98aacb3</citedby><cites>FETCH-LOGICAL-c674t-3bba8dfe6ce1083a32ca310d694d39017b007fa25cd51ce7b042ac9e0b98aacb3</cites><orcidid>0000-0002-8211-1817 ; 0000-0001-5917-4601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-018-0090-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-018-0090-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29988126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anathy, Vikas</creatorcontrib><creatorcontrib>Lahue, Karolyn G.</creatorcontrib><creatorcontrib>Chapman, David G.</creatorcontrib><creatorcontrib>Chia, Shi B.</creatorcontrib><creatorcontrib>Casey, Dylan T.</creatorcontrib><creatorcontrib>Aboushousha, Reem</creatorcontrib><creatorcontrib>van der Velden, Jos L. J.</creatorcontrib><creatorcontrib>Elko, Evan</creatorcontrib><creatorcontrib>Hoffman, Sidra M.</creatorcontrib><creatorcontrib>McMillan, David H.</creatorcontrib><creatorcontrib>Jones, Jane T.</creatorcontrib><creatorcontrib>Nolin, James D.</creatorcontrib><creatorcontrib>Abdalla, Sarah</creatorcontrib><creatorcontrib>Schneider, Robert</creatorcontrib><creatorcontrib>Seward, David J.</creatorcontrib><creatorcontrib>Roberson, Elle C.</creatorcontrib><creatorcontrib>Liptak, Matthew D.</creatorcontrib><creatorcontrib>Cousins, Morgan E.</creatorcontrib><creatorcontrib>Butnor, Kelly J.</creatorcontrib><creatorcontrib>Taatjes, Douglas. J.</creatorcontrib><creatorcontrib>Budd, Ralph C.</creatorcontrib><creatorcontrib>Irvin, Charles G.</creatorcontrib><creatorcontrib>Ho, Ye-Shih</creatorcontrib><creatorcontrib>Hakem, Razq</creatorcontrib><creatorcontrib>Brown, Kevin K.</creatorcontrib><creatorcontrib>Matsui, Reiko</creatorcontrib><creatorcontrib>Bachschmid, Markus M.</creatorcontrib><creatorcontrib>Gomez, Jose L.</creatorcontrib><creatorcontrib>Kaminski, Naftali</creatorcontrib><creatorcontrib>van der Vliet, Albert</creatorcontrib><creatorcontrib>Janssen-Heininger, Yvonne M. W.</creatorcontrib><title>Reducing protein oxidation reverses lung fibrosis</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death
1
–
3
. Oxidative stress is believed to be critical in this disease pathogenesis
4
–
6
, although the exact mechanisms remain enigmatic. Protein
S
-glutathionylation (PSSG) is a post-translational modification of proteins that can be reversed by glutaredoxin-1 (GLRX)
7
. It remains unknown whether GLRX and PSSG play a role in lung fibrosis. Here, we explored the impact of GLRX and PSSG status on the pathogenesis of pulmonary fibrosis, using lung tissues from subjects with idiopathic pulmonary fibrosis, transgenic mouse models and direct administration of recombinant Glrx to airways of mice with existing fibrosis. We demonstrate that GLRX enzymatic activity was strongly decreased in fibrotic lungs, in accordance with increases in PSSG. Mice lacking
Glrx
were far more susceptible to bleomycin- or adenovirus encoding active transforming growth factor beta-1 (AdTGFB1)-induced pulmonary fibrosis, whereas transgenic overexpression of
Glrx
in the lung epithelium attenuated fibrosis. We furthermore show that endogenous GLRX was inactivated through an oxidative mechanism and that direct administration of the Glrx protein into airways augmented Glrx activity and reversed increases in collagen in mice with TGFB1- or bleomycin-induced fibrosis, even when administered to fibrotic, aged animals. Collectively, these findings suggest the therapeutic potential of exogenous GLRX in treating lung fibrosis.
Targeting a post-translational modification of Fas by recombinant Glrx reverses established lung fibrosis in a mouse model of age-related idiopathic pulmonary fibrosis.</description><subject>692/699</subject><subject>692/699/1785</subject><subject>Adenoviruses</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bleomycin</subject><subject>Cancer Research</subject><subject>Collagen</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Epithelium</subject><subject>Female</subject><subject>Fibrosis</subject><subject>Gas exchange</subject><subject>Genetic engineering</subject><subject>Glutaredoxin</subject><subject>Glutaredoxins - metabolism</subject><subject>Glutathione - metabolism</subject><subject>Growth factors</subject><subject>Health aspects</subject><subject>Idiopathic Pulmonary Fibrosis - metabolism</subject><subject>Idiopathic Pulmonary Fibrosis - pathology</subject><subject>Infectious Diseases</subject><subject>Laboratory rats</subject><subject>Letter</subject><subject>Lung - pathology</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Medical schools</subject><subject>Metabolic Diseases</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidation-reduction reactions</subject><subject>Oxidative stress</subject><subject>Pathogenesis</subject><subject>Patient outcomes</subject><subject>Post-translation</subject><subject>Post-translational modifications</subject><subject>Protein S</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Pulmonary fibrosis</subject><subject>Respiratory tract diseases</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>Transforming growth factor-b1</subject><subject>Transgenic mice</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkktr3DAUhU1paR7tD-imDBQKWSi9kixb2hRC6CMQCKQPuhOyfO1R8EhTyQ6Zf18NkyYxTKFoocf9zpHQPUXxhsIpBS4_pJIKRQlQSQAUkM2z4pCKsiK0hl_P8xpqSaQS1UFxlNINAHAQ6mVxwJSSkrLqsKDX2E7W-X6xjmFE5xfhzrVmdMEvIt5iTJgWw5TrnWtiSC69Kl50Zkj4-n4-Ln58_vT9_Cu5vPpycX52SWxVlyPhTWNk22FlkYLkhjNrOIW2UmXLFdC6Aag7w4RtBbWYtyUzViE0ShpjG35cfNz5rqdmha1FP0Yz6HV0KxM3Ohin5xXvlroPt7pi2UpU2eDdvUEMvydMo74JU_T5zZqBLBWAVPyR6s2A2vkuZDO7csnqM1GzWtQSthTZQ_XoMd8cPHYuH8_40z18Hi2unN0rOJkJMjPi3dibKSV98e36_9mrn3P2_RN2iWYYlykM07bBaQ7SHWhzl1PE7uGnKeht2vQubTqnTW_TpjdZ8_Zpix4Uf-OVAbYDUi75HuNjC_7t-gc2m900</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Anathy, Vikas</creator><creator>Lahue, Karolyn G.</creator><creator>Chapman, David G.</creator><creator>Chia, Shi B.</creator><creator>Casey, Dylan T.</creator><creator>Aboushousha, Reem</creator><creator>van der Velden, Jos L. J.</creator><creator>Elko, Evan</creator><creator>Hoffman, Sidra M.</creator><creator>McMillan, David H.</creator><creator>Jones, Jane T.</creator><creator>Nolin, James D.</creator><creator>Abdalla, Sarah</creator><creator>Schneider, Robert</creator><creator>Seward, David J.</creator><creator>Roberson, Elle C.</creator><creator>Liptak, Matthew D.</creator><creator>Cousins, Morgan E.</creator><creator>Butnor, Kelly J.</creator><creator>Taatjes, Douglas. J.</creator><creator>Budd, Ralph C.</creator><creator>Irvin, Charles G.</creator><creator>Ho, Ye-Shih</creator><creator>Hakem, Razq</creator><creator>Brown, Kevin K.</creator><creator>Matsui, Reiko</creator><creator>Bachschmid, Markus M.</creator><creator>Gomez, Jose L.</creator><creator>Kaminski, Naftali</creator><creator>van der Vliet, Albert</creator><creator>Janssen-Heininger, Yvonne M. W.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8211-1817</orcidid><orcidid>https://orcid.org/0000-0001-5917-4601</orcidid></search><sort><creationdate>20180801</creationdate><title>Reducing protein oxidation reverses lung fibrosis</title><author>Anathy, Vikas ; Lahue, Karolyn G. ; Chapman, David G. ; Chia, Shi B. ; Casey, Dylan T. ; Aboushousha, Reem ; van der Velden, Jos L. J. ; Elko, Evan ; Hoffman, Sidra M. ; McMillan, David H. ; Jones, Jane T. ; Nolin, James D. ; Abdalla, Sarah ; Schneider, Robert ; Seward, David J. ; Roberson, Elle C. ; Liptak, Matthew D. ; Cousins, Morgan E. ; Butnor, Kelly J. ; Taatjes, Douglas. J. ; Budd, Ralph C. ; Irvin, Charles G. ; Ho, Ye-Shih ; Hakem, Razq ; Brown, Kevin K. ; Matsui, Reiko ; Bachschmid, Markus M. ; Gomez, Jose L. ; Kaminski, Naftali ; van der Vliet, Albert ; Janssen-Heininger, Yvonne M. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-3bba8dfe6ce1083a32ca310d694d39017b007fa25cd51ce7b042ac9e0b98aacb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>692/699</topic><topic>692/699/1785</topic><topic>Adenoviruses</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bleomycin</topic><topic>Cancer Research</topic><topic>Collagen</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Epithelium</topic><topic>Female</topic><topic>Fibrosis</topic><topic>Gas exchange</topic><topic>Genetic engineering</topic><topic>Glutaredoxin</topic><topic>Glutaredoxins - metabolism</topic><topic>Glutathione - metabolism</topic><topic>Growth factors</topic><topic>Health aspects</topic><topic>Idiopathic Pulmonary Fibrosis - metabolism</topic><topic>Idiopathic Pulmonary Fibrosis - pathology</topic><topic>Infectious Diseases</topic><topic>Laboratory rats</topic><topic>Letter</topic><topic>Lung - pathology</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Medical schools</topic><topic>Metabolic Diseases</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidation-reduction reactions</topic><topic>Oxidative stress</topic><topic>Pathogenesis</topic><topic>Patient outcomes</topic><topic>Post-translation</topic><topic>Post-translational modifications</topic><topic>Protein S</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Pulmonary fibrosis</topic><topic>Respiratory tract diseases</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>Transforming growth factor-b1</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anathy, Vikas</creatorcontrib><creatorcontrib>Lahue, Karolyn G.</creatorcontrib><creatorcontrib>Chapman, David G.</creatorcontrib><creatorcontrib>Chia, Shi B.</creatorcontrib><creatorcontrib>Casey, Dylan T.</creatorcontrib><creatorcontrib>Aboushousha, Reem</creatorcontrib><creatorcontrib>van der Velden, Jos L. J.</creatorcontrib><creatorcontrib>Elko, Evan</creatorcontrib><creatorcontrib>Hoffman, Sidra M.</creatorcontrib><creatorcontrib>McMillan, David H.</creatorcontrib><creatorcontrib>Jones, Jane T.</creatorcontrib><creatorcontrib>Nolin, James D.</creatorcontrib><creatorcontrib>Abdalla, Sarah</creatorcontrib><creatorcontrib>Schneider, Robert</creatorcontrib><creatorcontrib>Seward, David J.</creatorcontrib><creatorcontrib>Roberson, Elle C.</creatorcontrib><creatorcontrib>Liptak, Matthew D.</creatorcontrib><creatorcontrib>Cousins, Morgan E.</creatorcontrib><creatorcontrib>Butnor, Kelly J.</creatorcontrib><creatorcontrib>Taatjes, Douglas. J.</creatorcontrib><creatorcontrib>Budd, Ralph C.</creatorcontrib><creatorcontrib>Irvin, Charles G.</creatorcontrib><creatorcontrib>Ho, Ye-Shih</creatorcontrib><creatorcontrib>Hakem, Razq</creatorcontrib><creatorcontrib>Brown, Kevin K.</creatorcontrib><creatorcontrib>Matsui, Reiko</creatorcontrib><creatorcontrib>Bachschmid, Markus M.</creatorcontrib><creatorcontrib>Gomez, Jose L.</creatorcontrib><creatorcontrib>Kaminski, Naftali</creatorcontrib><creatorcontrib>van der Vliet, Albert</creatorcontrib><creatorcontrib>Janssen-Heininger, Yvonne M. W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anathy, Vikas</au><au>Lahue, Karolyn G.</au><au>Chapman, David G.</au><au>Chia, Shi B.</au><au>Casey, Dylan T.</au><au>Aboushousha, Reem</au><au>van der Velden, Jos L. J.</au><au>Elko, Evan</au><au>Hoffman, Sidra M.</au><au>McMillan, David H.</au><au>Jones, Jane T.</au><au>Nolin, James D.</au><au>Abdalla, Sarah</au><au>Schneider, Robert</au><au>Seward, David J.</au><au>Roberson, Elle C.</au><au>Liptak, Matthew D.</au><au>Cousins, Morgan E.</au><au>Butnor, Kelly J.</au><au>Taatjes, Douglas. J.</au><au>Budd, Ralph C.</au><au>Irvin, Charles G.</au><au>Ho, Ye-Shih</au><au>Hakem, Razq</au><au>Brown, Kevin K.</au><au>Matsui, Reiko</au><au>Bachschmid, Markus M.</au><au>Gomez, Jose L.</au><au>Kaminski, Naftali</au><au>van der Vliet, Albert</au><au>Janssen-Heininger, Yvonne M. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing protein oxidation reverses lung fibrosis</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>24</volume><issue>8</issue><spage>1128</spage><epage>1135</epage><pages>1128-1135</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death
1
–
3
. Oxidative stress is believed to be critical in this disease pathogenesis
4
–
6
, although the exact mechanisms remain enigmatic. Protein
S
-glutathionylation (PSSG) is a post-translational modification of proteins that can be reversed by glutaredoxin-1 (GLRX)
7
. It remains unknown whether GLRX and PSSG play a role in lung fibrosis. Here, we explored the impact of GLRX and PSSG status on the pathogenesis of pulmonary fibrosis, using lung tissues from subjects with idiopathic pulmonary fibrosis, transgenic mouse models and direct administration of recombinant Glrx to airways of mice with existing fibrosis. We demonstrate that GLRX enzymatic activity was strongly decreased in fibrotic lungs, in accordance with increases in PSSG. Mice lacking
Glrx
were far more susceptible to bleomycin- or adenovirus encoding active transforming growth factor beta-1 (AdTGFB1)-induced pulmonary fibrosis, whereas transgenic overexpression of
Glrx
in the lung epithelium attenuated fibrosis. We furthermore show that endogenous GLRX was inactivated through an oxidative mechanism and that direct administration of the Glrx protein into airways augmented Glrx activity and reversed increases in collagen in mice with TGFB1- or bleomycin-induced fibrosis, even when administered to fibrotic, aged animals. Collectively, these findings suggest the therapeutic potential of exogenous GLRX in treating lung fibrosis.
Targeting a post-translational modification of Fas by recombinant Glrx reverses established lung fibrosis in a mouse model of age-related idiopathic pulmonary fibrosis.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29988126</pmid><doi>10.1038/s41591-018-0090-y</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8211-1817</orcidid><orcidid>https://orcid.org/0000-0001-5917-4601</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2018-08, Vol.24 (8), p.1128-1135 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6204256 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature |
subjects | 692/699 692/699/1785 Adenoviruses Animal models Animals Biomedical and Life Sciences Biomedicine Bleomycin Cancer Research Collagen Enzymatic activity Enzymes Epithelium Female Fibrosis Gas exchange Genetic engineering Glutaredoxin Glutaredoxins - metabolism Glutathione - metabolism Growth factors Health aspects Idiopathic Pulmonary Fibrosis - metabolism Idiopathic Pulmonary Fibrosis - pathology Infectious Diseases Laboratory rats Letter Lung - pathology Lung diseases Lungs Medical schools Metabolic Diseases Mice, Inbred C57BL Mice, Transgenic Molecular Medicine Neurosciences Oxidation Oxidation-Reduction Oxidation-reduction reactions Oxidative stress Pathogenesis Patient outcomes Post-translation Post-translational modifications Protein S Proteins Proteins - metabolism Pulmonary fibrosis Respiratory tract diseases Risk factors Rodents Transforming growth factor-b1 Transgenic mice |
title | Reducing protein oxidation reverses lung fibrosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20protein%20oxidation%20reverses%20lung%20fibrosis&rft.jtitle=Nature%20medicine&rft.au=Anathy,%20Vikas&rft.date=2018-08-01&rft.volume=24&rft.issue=8&rft.spage=1128&rft.epage=1135&rft.pages=1128-1135&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-018-0090-y&rft_dat=%3Cgale_pubme%3EA572757803%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084900893&rft_id=info:pmid/29988126&rft_galeid=A572757803&rfr_iscdi=true |