Accelerated Carrier Relaxation through Reduced Coulomb Screening in Two-Dimensional Halide Perovskite Nanoplatelets

For high-speed optoelectronic applications relying on fast relaxation or energy-transfer mechanisms, understanding of carrier relaxation and recombination dynamics is critical. Here, we compare the differences in photoexcited carrier dynamics in two-dimensional (2D) and quasi-three-dimensional (quas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-10, Vol.12 (10), p.10151-10158
Hauptverfasser: Hintermayr, Verena A, Polavarapu, Lakshminarayana, Urban, Alexander S, Feldmann, Jochen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10158
container_issue 10
container_start_page 10151
container_title ACS nano
container_volume 12
creator Hintermayr, Verena A
Polavarapu, Lakshminarayana
Urban, Alexander S
Feldmann, Jochen
description For high-speed optoelectronic applications relying on fast relaxation or energy-transfer mechanisms, understanding of carrier relaxation and recombination dynamics is critical. Here, we compare the differences in photoexcited carrier dynamics in two-dimensional (2D) and quasi-three-dimensional (quasi-3D) colloidal methylammonium lead iodide perovskite nanoplatelets via differential transmission spectroscopy. We find that the cooling of excited electron–hole pairs by phonon emission progresses much faster and is intensity-independent in the 2D case. This is due to the low dielectric surrounding of the thin perovskite layers, for which the Fröhlich interaction is screened less efficiently leading to higher and less density-dependent carrier-phonon scattering rates. In addition, rapid dissipation of heat into the surrounding occurs due to the high surface-to-volume ratio. Furthermore, we observe a subpicosecond dissociation of resonantly excited 1s excitons in the quasi-3D case, an effect which is suppressed in the 2D nanoplatelets due to their large exciton binding energies. The results highlight the importance of the surrounding environment of the inorganic nanoplatelets on their relaxation dynamics. Moreover, this 2D material with relaxation times in the subpicosecond regime shows great potential for realizing devices such as photodetectors or all-optical switches operating at THz frequencies.
doi_str_mv 10.1021/acsnano.8b05029
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6202634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117395177</sourcerecordid><originalsourceid>FETCH-LOGICAL-a495t-9c226cfe7a29b5aea8d1c050b40d752990d5eecbbe4f2a35455e0cb6c73106fb3</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS0Eoh9w5oZ8RKrS2k7sbC5I1VJopQoQFImbNXYmuy6OvdhJKf99Xe2yggMnW57fezOeR8grzk45E_wMbA4Q4unCMMlE94Qc8q5WFVuo70_3d8kPyFHOt4zJdtGq5-SgLqxiUh6SfG4tekwwYU-XkJLDRL-gh3uYXAx0Wqc4r9blqZ_tIxJnH0dDv9qEGFxYURfoza9YvXMjhlwk4OkleNcj_Ywp3uUfbkL6sQy58aWJxym_IM8G8Blf7s5j8u39xc3ysrr-9OFqeX5dQdPJqeqsEMoO2ILojASERc9t-aZpWN9K0XWsl4jWGGwGAbVspERmjbJtzZkaTH1M3m59N7MZsbcYpgReb5IbIf3WEZz-txLcWq_inVaCCVU3xeDNziDFnzPmSY8ul3V5CBjnrAXnbd1J3rYFPduiNsWcEw77Npzpx6j0Liq9i6ooXv893Z7_k00BTrZAUerbOKey2vxfuweDMqOX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117395177</pqid></control><display><type>article</type><title>Accelerated Carrier Relaxation through Reduced Coulomb Screening in Two-Dimensional Halide Perovskite Nanoplatelets</title><source>ACS Publications</source><creator>Hintermayr, Verena A ; Polavarapu, Lakshminarayana ; Urban, Alexander S ; Feldmann, Jochen</creator><creatorcontrib>Hintermayr, Verena A ; Polavarapu, Lakshminarayana ; Urban, Alexander S ; Feldmann, Jochen</creatorcontrib><description>For high-speed optoelectronic applications relying on fast relaxation or energy-transfer mechanisms, understanding of carrier relaxation and recombination dynamics is critical. Here, we compare the differences in photoexcited carrier dynamics in two-dimensional (2D) and quasi-three-dimensional (quasi-3D) colloidal methylammonium lead iodide perovskite nanoplatelets via differential transmission spectroscopy. We find that the cooling of excited electron–hole pairs by phonon emission progresses much faster and is intensity-independent in the 2D case. This is due to the low dielectric surrounding of the thin perovskite layers, for which the Fröhlich interaction is screened less efficiently leading to higher and less density-dependent carrier-phonon scattering rates. In addition, rapid dissipation of heat into the surrounding occurs due to the high surface-to-volume ratio. Furthermore, we observe a subpicosecond dissociation of resonantly excited 1s excitons in the quasi-3D case, an effect which is suppressed in the 2D nanoplatelets due to their large exciton binding energies. The results highlight the importance of the surrounding environment of the inorganic nanoplatelets on their relaxation dynamics. Moreover, this 2D material with relaxation times in the subpicosecond regime shows great potential for realizing devices such as photodetectors or all-optical switches operating at THz frequencies.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b05029</identifier><identifier>PMID: 30296055</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2018-10, Vol.12 (10), p.10151-10158</ispartof><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a495t-9c226cfe7a29b5aea8d1c050b40d752990d5eecbbe4f2a35455e0cb6c73106fb3</citedby><cites>FETCH-LOGICAL-a495t-9c226cfe7a29b5aea8d1c050b40d752990d5eecbbe4f2a35455e0cb6c73106fb3</cites><orcidid>0000-0001-6168-2509 ; 0000-0002-9040-5719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b05029$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b05029$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30296055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hintermayr, Verena A</creatorcontrib><creatorcontrib>Polavarapu, Lakshminarayana</creatorcontrib><creatorcontrib>Urban, Alexander S</creatorcontrib><creatorcontrib>Feldmann, Jochen</creatorcontrib><title>Accelerated Carrier Relaxation through Reduced Coulomb Screening in Two-Dimensional Halide Perovskite Nanoplatelets</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>For high-speed optoelectronic applications relying on fast relaxation or energy-transfer mechanisms, understanding of carrier relaxation and recombination dynamics is critical. Here, we compare the differences in photoexcited carrier dynamics in two-dimensional (2D) and quasi-three-dimensional (quasi-3D) colloidal methylammonium lead iodide perovskite nanoplatelets via differential transmission spectroscopy. We find that the cooling of excited electron–hole pairs by phonon emission progresses much faster and is intensity-independent in the 2D case. This is due to the low dielectric surrounding of the thin perovskite layers, for which the Fröhlich interaction is screened less efficiently leading to higher and less density-dependent carrier-phonon scattering rates. In addition, rapid dissipation of heat into the surrounding occurs due to the high surface-to-volume ratio. Furthermore, we observe a subpicosecond dissociation of resonantly excited 1s excitons in the quasi-3D case, an effect which is suppressed in the 2D nanoplatelets due to their large exciton binding energies. The results highlight the importance of the surrounding environment of the inorganic nanoplatelets on their relaxation dynamics. Moreover, this 2D material with relaxation times in the subpicosecond regime shows great potential for realizing devices such as photodetectors or all-optical switches operating at THz frequencies.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1v1DAQxS0Eoh9w5oZ8RKrS2k7sbC5I1VJopQoQFImbNXYmuy6OvdhJKf99Xe2yggMnW57fezOeR8grzk45E_wMbA4Q4unCMMlE94Qc8q5WFVuo70_3d8kPyFHOt4zJdtGq5-SgLqxiUh6SfG4tekwwYU-XkJLDRL-gh3uYXAx0Wqc4r9blqZ_tIxJnH0dDv9qEGFxYURfoza9YvXMjhlwk4OkleNcj_Ywp3uUfbkL6sQy58aWJxym_IM8G8Blf7s5j8u39xc3ysrr-9OFqeX5dQdPJqeqsEMoO2ILojASERc9t-aZpWN9K0XWsl4jWGGwGAbVspERmjbJtzZkaTH1M3m59N7MZsbcYpgReb5IbIf3WEZz-txLcWq_inVaCCVU3xeDNziDFnzPmSY8ul3V5CBjnrAXnbd1J3rYFPduiNsWcEw77Npzpx6j0Liq9i6ooXv893Z7_k00BTrZAUerbOKey2vxfuweDMqOX</recordid><startdate>20181023</startdate><enddate>20181023</enddate><creator>Hintermayr, Verena A</creator><creator>Polavarapu, Lakshminarayana</creator><creator>Urban, Alexander S</creator><creator>Feldmann, Jochen</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6168-2509</orcidid><orcidid>https://orcid.org/0000-0002-9040-5719</orcidid></search><sort><creationdate>20181023</creationdate><title>Accelerated Carrier Relaxation through Reduced Coulomb Screening in Two-Dimensional Halide Perovskite Nanoplatelets</title><author>Hintermayr, Verena A ; Polavarapu, Lakshminarayana ; Urban, Alexander S ; Feldmann, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a495t-9c226cfe7a29b5aea8d1c050b40d752990d5eecbbe4f2a35455e0cb6c73106fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hintermayr, Verena A</creatorcontrib><creatorcontrib>Polavarapu, Lakshminarayana</creatorcontrib><creatorcontrib>Urban, Alexander S</creatorcontrib><creatorcontrib>Feldmann, Jochen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hintermayr, Verena A</au><au>Polavarapu, Lakshminarayana</au><au>Urban, Alexander S</au><au>Feldmann, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Carrier Relaxation through Reduced Coulomb Screening in Two-Dimensional Halide Perovskite Nanoplatelets</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-10-23</date><risdate>2018</risdate><volume>12</volume><issue>10</issue><spage>10151</spage><epage>10158</epage><pages>10151-10158</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>For high-speed optoelectronic applications relying on fast relaxation or energy-transfer mechanisms, understanding of carrier relaxation and recombination dynamics is critical. Here, we compare the differences in photoexcited carrier dynamics in two-dimensional (2D) and quasi-three-dimensional (quasi-3D) colloidal methylammonium lead iodide perovskite nanoplatelets via differential transmission spectroscopy. We find that the cooling of excited electron–hole pairs by phonon emission progresses much faster and is intensity-independent in the 2D case. This is due to the low dielectric surrounding of the thin perovskite layers, for which the Fröhlich interaction is screened less efficiently leading to higher and less density-dependent carrier-phonon scattering rates. In addition, rapid dissipation of heat into the surrounding occurs due to the high surface-to-volume ratio. Furthermore, we observe a subpicosecond dissociation of resonantly excited 1s excitons in the quasi-3D case, an effect which is suppressed in the 2D nanoplatelets due to their large exciton binding energies. The results highlight the importance of the surrounding environment of the inorganic nanoplatelets on their relaxation dynamics. Moreover, this 2D material with relaxation times in the subpicosecond regime shows great potential for realizing devices such as photodetectors or all-optical switches operating at THz frequencies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30296055</pmid><doi>10.1021/acsnano.8b05029</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6168-2509</orcidid><orcidid>https://orcid.org/0000-0002-9040-5719</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-10, Vol.12 (10), p.10151-10158
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6202634
source ACS Publications
title Accelerated Carrier Relaxation through Reduced Coulomb Screening in Two-Dimensional Halide Perovskite Nanoplatelets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Carrier%20Relaxation%20through%20Reduced%20Coulomb%20Screening%20in%20Two-Dimensional%20Halide%20Perovskite%20Nanoplatelets&rft.jtitle=ACS%20nano&rft.au=Hintermayr,%20Verena%20A&rft.date=2018-10-23&rft.volume=12&rft.issue=10&rft.spage=10151&rft.epage=10158&rft.pages=10151-10158&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b05029&rft_dat=%3Cproquest_pubme%3E2117395177%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117395177&rft_id=info:pmid/30296055&rfr_iscdi=true