Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria
Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world’s most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of vol...
Gespeichert in:
Veröffentlicht in: | Scientific data 2018-10, Vol.5 (1), p.180217-180217, Article 180217 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180217 |
---|---|
container_issue | 1 |
container_start_page | 180217 |
container_title | Scientific data |
container_volume | 5 |
creator | Yuan, Jiangye Roy Chowdhury, Pranab K. McKee, Jacob Yang, Hsiuhan Lexie Weaver, Jeanette Bhaduri, Budhendra |
description | Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world’s most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of volunteered geographic information (VGI) has emerged as a widely accepted source to fill such voids. Despite its promise, availability of building maps for developing countries significantly lags behind demand. We present a new approach, coupling deep convolutional neural networks (CNNs) with VGI for automating building map generation from high-resolution satellite images for Kano state, Nigeria. Specifically, we trained a CNN with VGI building outlines of limited quality and quantity and generated building maps for a 50,000 km
2
area. Resulting maps are in strong agreement with existing settlement maps and require a fraction of the manual input needed for the latter. The VGI-based maps will provide support across multiple facets of socioeconomic development in Kano state, and demonstrates potential advancements in current mapping capabilities in resource constrained countries.
Design Type(s)
process-based data analysis objective • modeling and simulation objective
Measurement Type(s)
geographic location
Technology Type(s)
Neural networks models
Factor Type(s)
Sample Characteristic(s)
Kano State • Yaounde • anthropogenic environment
Machine-accessible metadata file describing the reported data
(ISA-Tab format) |
doi_str_mv | 10.1038/sdata.2018.217 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6198754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127203913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-402528a0483f1dba1b0e8a3268d8ac88bd6774e7b06887d2092c70df63e764dc3</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxSMEolXplSOK4MKhux1_JPZekFBVCqKCC5wtx55kXSV2sJ0K_nsctpSCxMnPmt-8GftV1XMCWwJMniers95SIHJLiXhUHVNo6Ibzlj1-oI-q05RuAIAwDo2Ap9URA9YQupPHVX_5fR6Dy84PtUWc6xF19OtNe1vfhnHxGTGirQcMQ9Tz3pna-T7ESWcXfF1UPel5Xlu6xY22iFSI-qP24az-5AaMTj-rnvR6THh6d55UX99dfrl4v7n-fPXh4u31xjQNyRsOtKFSA5esJ7bTpAOUmtFWWqmNlJ1theAoOmilFJbCjhoBtm8ZipZbw06qNwffeekmtAZ9jnpUc3STjj9U0E79XfFur4Zwq1qyk6LhxeDlwSCk7FQyLqPZm-A9mqxIC4LuWIFe302J4duCKavJJYPjqD2GJSlKqKDAdmRFX_2D3oQl-vIHK8UJ4S2s1PZAmRhSitjfb0xArVGrX1GrNerSJ0rDi4fvvMd_B1uA8wOQSsmXDP7M_Y_lT_mItXE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124114603</pqid></control><display><type>article</type><title>Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yuan, Jiangye ; Roy Chowdhury, Pranab K. ; McKee, Jacob ; Yang, Hsiuhan Lexie ; Weaver, Jeanette ; Bhaduri, Budhendra</creator><creatorcontrib>Yuan, Jiangye ; Roy Chowdhury, Pranab K. ; McKee, Jacob ; Yang, Hsiuhan Lexie ; Weaver, Jeanette ; Bhaduri, Budhendra ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world’s most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of volunteered geographic information (VGI) has emerged as a widely accepted source to fill such voids. Despite its promise, availability of building maps for developing countries significantly lags behind demand. We present a new approach, coupling deep convolutional neural networks (CNNs) with VGI for automating building map generation from high-resolution satellite images for Kano state, Nigeria. Specifically, we trained a CNN with VGI building outlines of limited quality and quantity and generated building maps for a 50,000 km
2
area. Resulting maps are in strong agreement with existing settlement maps and require a fraction of the manual input needed for the latter. The VGI-based maps will provide support across multiple facets of socioeconomic development in Kano state, and demonstrates potential advancements in current mapping capabilities in resource constrained countries.
Design Type(s)
process-based data analysis objective • modeling and simulation objective
Measurement Type(s)
geographic location
Technology Type(s)
Neural networks models
Factor Type(s)
Sample Characteristic(s)
Kano State • Yaounde • anthropogenic environment
Machine-accessible metadata file describing the reported data
(ISA-Tab format)</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/sdata.2018.217</identifier><identifier>PMID: 30351298</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>706/134 ; 706/2808 ; 706/648/697/129 ; Data Descriptor ; Developing countries ; Developing world ; GENERAL AND MISCELLANEOUS ; Geography ; Humanities and Social Sciences ; LDCs ; Mapping ; multidisciplinary ; Neural networks ; Science</subject><ispartof>Scientific data, 2018-10, Vol.5 (1), p.180217-180217, Article 180217</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2018</rights><rights>Copyright Nature Publishing Group Oct 2018</rights><rights>Copyright © 2018, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2018 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-402528a0483f1dba1b0e8a3268d8ac88bd6774e7b06887d2092c70df63e764dc3</citedby><cites>FETCH-LOGICAL-c551t-402528a0483f1dba1b0e8a3268d8ac88bd6774e7b06887d2092c70df63e764dc3</cites><orcidid>0000-0003-0205-8698 ; 0000000302058698 ; 0000000185519925 ; 0000000338125346 ; 000000027572050X ; 0000000315551377 ; 0000000322526778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198754/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198754/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30351298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1607293$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Jiangye</creatorcontrib><creatorcontrib>Roy Chowdhury, Pranab K.</creatorcontrib><creatorcontrib>McKee, Jacob</creatorcontrib><creatorcontrib>Yang, Hsiuhan Lexie</creatorcontrib><creatorcontrib>Weaver, Jeanette</creatorcontrib><creatorcontrib>Bhaduri, Budhendra</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world’s most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of volunteered geographic information (VGI) has emerged as a widely accepted source to fill such voids. Despite its promise, availability of building maps for developing countries significantly lags behind demand. We present a new approach, coupling deep convolutional neural networks (CNNs) with VGI for automating building map generation from high-resolution satellite images for Kano state, Nigeria. Specifically, we trained a CNN with VGI building outlines of limited quality and quantity and generated building maps for a 50,000 km
2
area. Resulting maps are in strong agreement with existing settlement maps and require a fraction of the manual input needed for the latter. The VGI-based maps will provide support across multiple facets of socioeconomic development in Kano state, and demonstrates potential advancements in current mapping capabilities in resource constrained countries.
Design Type(s)
process-based data analysis objective • modeling and simulation objective
Measurement Type(s)
geographic location
Technology Type(s)
Neural networks models
Factor Type(s)
Sample Characteristic(s)
Kano State • Yaounde • anthropogenic environment
Machine-accessible metadata file describing the reported data
(ISA-Tab format)</description><subject>706/134</subject><subject>706/2808</subject><subject>706/648/697/129</subject><subject>Data Descriptor</subject><subject>Developing countries</subject><subject>Developing world</subject><subject>GENERAL AND MISCELLANEOUS</subject><subject>Geography</subject><subject>Humanities and Social Sciences</subject><subject>LDCs</subject><subject>Mapping</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Science</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1v1DAQxSMEolXplSOK4MKhux1_JPZekFBVCqKCC5wtx55kXSV2sJ0K_nsctpSCxMnPmt-8GftV1XMCWwJMniers95SIHJLiXhUHVNo6Ibzlj1-oI-q05RuAIAwDo2Ap9URA9YQupPHVX_5fR6Dy84PtUWc6xF19OtNe1vfhnHxGTGirQcMQ9Tz3pna-T7ESWcXfF1UPel5Xlu6xY22iFSI-qP24az-5AaMTj-rnvR6THh6d55UX99dfrl4v7n-fPXh4u31xjQNyRsOtKFSA5esJ7bTpAOUmtFWWqmNlJ1theAoOmilFJbCjhoBtm8ZipZbw06qNwffeekmtAZ9jnpUc3STjj9U0E79XfFur4Zwq1qyk6LhxeDlwSCk7FQyLqPZm-A9mqxIC4LuWIFe302J4duCKavJJYPjqD2GJSlKqKDAdmRFX_2D3oQl-vIHK8UJ4S2s1PZAmRhSitjfb0xArVGrX1GrNerSJ0rDi4fvvMd_B1uA8wOQSsmXDP7M_Y_lT_mItXE</recordid><startdate>20181023</startdate><enddate>20181023</enddate><creator>Yuan, Jiangye</creator><creator>Roy Chowdhury, Pranab K.</creator><creator>McKee, Jacob</creator><creator>Yang, Hsiuhan Lexie</creator><creator>Weaver, Jeanette</creator><creator>Bhaduri, Budhendra</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0205-8698</orcidid><orcidid>https://orcid.org/0000000302058698</orcidid><orcidid>https://orcid.org/0000000185519925</orcidid><orcidid>https://orcid.org/0000000338125346</orcidid><orcidid>https://orcid.org/000000027572050X</orcidid><orcidid>https://orcid.org/0000000315551377</orcidid><orcidid>https://orcid.org/0000000322526778</orcidid></search><sort><creationdate>20181023</creationdate><title>Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria</title><author>Yuan, Jiangye ; Roy Chowdhury, Pranab K. ; McKee, Jacob ; Yang, Hsiuhan Lexie ; Weaver, Jeanette ; Bhaduri, Budhendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-402528a0483f1dba1b0e8a3268d8ac88bd6774e7b06887d2092c70df63e764dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>706/134</topic><topic>706/2808</topic><topic>706/648/697/129</topic><topic>Data Descriptor</topic><topic>Developing countries</topic><topic>Developing world</topic><topic>GENERAL AND MISCELLANEOUS</topic><topic>Geography</topic><topic>Humanities and Social Sciences</topic><topic>LDCs</topic><topic>Mapping</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Jiangye</creatorcontrib><creatorcontrib>Roy Chowdhury, Pranab K.</creatorcontrib><creatorcontrib>McKee, Jacob</creatorcontrib><creatorcontrib>Yang, Hsiuhan Lexie</creatorcontrib><creatorcontrib>Weaver, Jeanette</creatorcontrib><creatorcontrib>Bhaduri, Budhendra</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Jiangye</au><au>Roy Chowdhury, Pranab K.</au><au>McKee, Jacob</au><au>Yang, Hsiuhan Lexie</au><au>Weaver, Jeanette</au><au>Bhaduri, Budhendra</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2018-10-23</date><risdate>2018</risdate><volume>5</volume><issue>1</issue><spage>180217</spage><epage>180217</epage><pages>180217-180217</pages><artnum>180217</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world’s most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of volunteered geographic information (VGI) has emerged as a widely accepted source to fill such voids. Despite its promise, availability of building maps for developing countries significantly lags behind demand. We present a new approach, coupling deep convolutional neural networks (CNNs) with VGI for automating building map generation from high-resolution satellite images for Kano state, Nigeria. Specifically, we trained a CNN with VGI building outlines of limited quality and quantity and generated building maps for a 50,000 km
2
area. Resulting maps are in strong agreement with existing settlement maps and require a fraction of the manual input needed for the latter. The VGI-based maps will provide support across multiple facets of socioeconomic development in Kano state, and demonstrates potential advancements in current mapping capabilities in resource constrained countries.
Design Type(s)
process-based data analysis objective • modeling and simulation objective
Measurement Type(s)
geographic location
Technology Type(s)
Neural networks models
Factor Type(s)
Sample Characteristic(s)
Kano State • Yaounde • anthropogenic environment
Machine-accessible metadata file describing the reported data
(ISA-Tab format)</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30351298</pmid><doi>10.1038/sdata.2018.217</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0205-8698</orcidid><orcidid>https://orcid.org/0000000302058698</orcidid><orcidid>https://orcid.org/0000000185519925</orcidid><orcidid>https://orcid.org/0000000338125346</orcidid><orcidid>https://orcid.org/000000027572050X</orcidid><orcidid>https://orcid.org/0000000315551377</orcidid><orcidid>https://orcid.org/0000000322526778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-4463 |
ispartof | Scientific data, 2018-10, Vol.5 (1), p.180217-180217, Article 180217 |
issn | 2052-4463 2052-4463 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6198754 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 706/134 706/2808 706/648/697/129 Data Descriptor Developing countries Developing world GENERAL AND MISCELLANEOUS Geography Humanities and Social Sciences LDCs Mapping multidisciplinary Neural networks Science |
title | Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20deep%20learning%20and%20volunteered%20geographic%20information%20for%20mapping%20buildings%20in%20Kano,%20Nigeria&rft.jtitle=Scientific%20data&rft.au=Yuan,%20Jiangye&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-10-23&rft.volume=5&rft.issue=1&rft.spage=180217&rft.epage=180217&rft.pages=180217-180217&rft.artnum=180217&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/sdata.2018.217&rft_dat=%3Cproquest_pubme%3E2127203913%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124114603&rft_id=info:pmid/30351298&rfr_iscdi=true |