Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria
Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world’s most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of vol...
Gespeichert in:
Veröffentlicht in: | Scientific data 2018-10, Vol.5 (1), p.180217-180217, Article 180217 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world’s most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of volunteered geographic information (VGI) has emerged as a widely accepted source to fill such voids. Despite its promise, availability of building maps for developing countries significantly lags behind demand. We present a new approach, coupling deep convolutional neural networks (CNNs) with VGI for automating building map generation from high-resolution satellite images for Kano state, Nigeria. Specifically, we trained a CNN with VGI building outlines of limited quality and quantity and generated building maps for a 50,000 km
2
area. Resulting maps are in strong agreement with existing settlement maps and require a fraction of the manual input needed for the latter. The VGI-based maps will provide support across multiple facets of socioeconomic development in Kano state, and demonstrates potential advancements in current mapping capabilities in resource constrained countries.
Design Type(s)
process-based data analysis objective • modeling and simulation objective
Measurement Type(s)
geographic location
Technology Type(s)
Neural networks models
Factor Type(s)
Sample Characteristic(s)
Kano State • Yaounde • anthropogenic environment
Machine-accessible metadata file describing the reported data
(ISA-Tab format) |
---|---|
ISSN: | 2052-4463 2052-4463 |
DOI: | 10.1038/sdata.2018.217 |