Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed

By modification of glasses with ultrafast laser radiation and subsequent wet-chemical etching (here named SLE = selective laser-induced etching), precise 3D structures have been produced, especially in quartz glass (fused silica), for more than a decade. By the combination of a three-axis system to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2017-04, Vol.8 (4), p.110
Hauptverfasser: Gottmann, Jens, Hermans, Martin, Repiev, Nikolai, Ortmann, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 110
container_title Micromachines (Basel)
container_volume 8
creator Gottmann, Jens
Hermans, Martin
Repiev, Nikolai
Ortmann, Jürgen
description By modification of glasses with ultrafast laser radiation and subsequent wet-chemical etching (here named SLE = selective laser-induced etching), precise 3D structures have been produced, especially in quartz glass (fused silica), for more than a decade. By the combination of a three-axis system to move the glass sample and a fast 3D system to move the laser focus, the SLE process is now suitable to produce more complex structures in a shorter time. Here we present investigations which enabled the new possibilities. We started with investigations of the optimum laser parameters to enable high selective laser-induced etching: surprisingly, not the shortest pulse duration is best suited for the SLE process. Secondly we investigated the scaling of the writing velocity: a faster writing speed results in higher selectivity and thus higher precision of the resulting structures, so the SLE process is now even suitable for the mass production of 3D structures. Finally we programmed a printer driver for commercial CAD software enabling the automated production of complex 3D glass parts as new examples for lab-on-a-chip applications such as nested nozzles, connectors and a cell-sorting structure.
doi_str_mv 10.3390/mi8040110
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6190087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899830142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-327b2b438f80838bb7e6a6825134e06a56df4afcaae7d168f9add14ed06653e73</originalsourceid><addsrcrecordid>eNpVUU1LxDAQLaKg6B78BwFPHqpJ06bpRZD1a2FFZV3wFtJk4mbpNjVpF_Xk2bO_0F9iF5dF5zAzMG_ePN5E0SHBJ5QW-HRhOU4xIXgr2ktwnsSMsaftP_1uNAhhjvvI86JPe9HnBCpQrV0CGssAPh7VulOg0WWrZrZ-Rs4geoHuPSgbrKvRQyd9-46uKxkCGrpF42qo24CM8-jWKu9M1VltFTpvmsoq2fZL4fvja9rEEyWrNeVqsYJX274hWWs0aQD0QbRjZBVgsK770fTq8nF4E4_vrkfD83GsaJG1MU3yMilTyg3HnPKyzIFJxpOM0BQwkxnTJpVGSQm5JoybQmpNUtCYsYxCTvejs1_episXoFUv38tKNN4upH8TTlrxf1LbmXh2S8FI7xlfERytCbx76SC0Yu46X_eaBeFFwSkmadKjjn9RvScheDCbCwSL1bvE5l30B9o_i5s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899830142</pqid></control><display><type>article</type><title>Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Gottmann, Jens ; Hermans, Martin ; Repiev, Nikolai ; Ortmann, Jürgen</creator><creatorcontrib>Gottmann, Jens ; Hermans, Martin ; Repiev, Nikolai ; Ortmann, Jürgen</creatorcontrib><description>By modification of glasses with ultrafast laser radiation and subsequent wet-chemical etching (here named SLE = selective laser-induced etching), precise 3D structures have been produced, especially in quartz glass (fused silica), for more than a decade. By the combination of a three-axis system to move the glass sample and a fast 3D system to move the laser focus, the SLE process is now suitable to produce more complex structures in a shorter time. Here we present investigations which enabled the new possibilities. We started with investigations of the optimum laser parameters to enable high selective laser-induced etching: surprisingly, not the shortest pulse duration is best suited for the SLE process. Secondly we investigated the scaling of the writing velocity: a faster writing speed results in higher selectivity and thus higher precision of the resulting structures, so the SLE process is now even suitable for the mass production of 3D structures. Finally we programmed a printer driver for commercial CAD software enabling the automated production of complex 3D glass parts as new examples for lab-on-a-chip applications such as nested nozzles, connectors and a cell-sorting structure.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi8040110</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Chemical etching ; Complexity ; Connectors ; Etching ; Fused silica ; Lasers ; Mass production ; Pulse duration ; Silica glass ; Ultrafast lasers</subject><ispartof>Micromachines (Basel), 2017-04, Vol.8 (4), p.110</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-327b2b438f80838bb7e6a6825134e06a56df4afcaae7d168f9add14ed06653e73</citedby><cites>FETCH-LOGICAL-c395t-327b2b438f80838bb7e6a6825134e06a56df4afcaae7d168f9add14ed06653e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190087/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190087/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Gottmann, Jens</creatorcontrib><creatorcontrib>Hermans, Martin</creatorcontrib><creatorcontrib>Repiev, Nikolai</creatorcontrib><creatorcontrib>Ortmann, Jürgen</creatorcontrib><title>Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed</title><title>Micromachines (Basel)</title><description>By modification of glasses with ultrafast laser radiation and subsequent wet-chemical etching (here named SLE = selective laser-induced etching), precise 3D structures have been produced, especially in quartz glass (fused silica), for more than a decade. By the combination of a three-axis system to move the glass sample and a fast 3D system to move the laser focus, the SLE process is now suitable to produce more complex structures in a shorter time. Here we present investigations which enabled the new possibilities. We started with investigations of the optimum laser parameters to enable high selective laser-induced etching: surprisingly, not the shortest pulse duration is best suited for the SLE process. Secondly we investigated the scaling of the writing velocity: a faster writing speed results in higher selectivity and thus higher precision of the resulting structures, so the SLE process is now even suitable for the mass production of 3D structures. Finally we programmed a printer driver for commercial CAD software enabling the automated production of complex 3D glass parts as new examples for lab-on-a-chip applications such as nested nozzles, connectors and a cell-sorting structure.</description><subject>Chemical etching</subject><subject>Complexity</subject><subject>Connectors</subject><subject>Etching</subject><subject>Fused silica</subject><subject>Lasers</subject><subject>Mass production</subject><subject>Pulse duration</subject><subject>Silica glass</subject><subject>Ultrafast lasers</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVUU1LxDAQLaKg6B78BwFPHqpJ06bpRZD1a2FFZV3wFtJk4mbpNjVpF_Xk2bO_0F9iF5dF5zAzMG_ePN5E0SHBJ5QW-HRhOU4xIXgr2ktwnsSMsaftP_1uNAhhjvvI86JPe9HnBCpQrV0CGssAPh7VulOg0WWrZrZ-Rs4geoHuPSgbrKvRQyd9-46uKxkCGrpF42qo24CM8-jWKu9M1VltFTpvmsoq2fZL4fvja9rEEyWrNeVqsYJX274hWWs0aQD0QbRjZBVgsK770fTq8nF4E4_vrkfD83GsaJG1MU3yMilTyg3HnPKyzIFJxpOM0BQwkxnTJpVGSQm5JoybQmpNUtCYsYxCTvejs1_episXoFUv38tKNN4upH8TTlrxf1LbmXh2S8FI7xlfERytCbx76SC0Yu46X_eaBeFFwSkmadKjjn9RvScheDCbCwSL1bvE5l30B9o_i5s</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Gottmann, Jens</creator><creator>Hermans, Martin</creator><creator>Repiev, Nikolai</creator><creator>Ortmann, Jürgen</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope></search><sort><creationdate>20170401</creationdate><title>Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed</title><author>Gottmann, Jens ; Hermans, Martin ; Repiev, Nikolai ; Ortmann, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-327b2b438f80838bb7e6a6825134e06a56df4afcaae7d168f9add14ed06653e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical etching</topic><topic>Complexity</topic><topic>Connectors</topic><topic>Etching</topic><topic>Fused silica</topic><topic>Lasers</topic><topic>Mass production</topic><topic>Pulse duration</topic><topic>Silica glass</topic><topic>Ultrafast lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gottmann, Jens</creatorcontrib><creatorcontrib>Hermans, Martin</creatorcontrib><creatorcontrib>Repiev, Nikolai</creatorcontrib><creatorcontrib>Ortmann, Jürgen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gottmann, Jens</au><au>Hermans, Martin</au><au>Repiev, Nikolai</au><au>Ortmann, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed</atitle><jtitle>Micromachines (Basel)</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>8</volume><issue>4</issue><spage>110</spage><pages>110-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>By modification of glasses with ultrafast laser radiation and subsequent wet-chemical etching (here named SLE = selective laser-induced etching), precise 3D structures have been produced, especially in quartz glass (fused silica), for more than a decade. By the combination of a three-axis system to move the glass sample and a fast 3D system to move the laser focus, the SLE process is now suitable to produce more complex structures in a shorter time. Here we present investigations which enabled the new possibilities. We started with investigations of the optimum laser parameters to enable high selective laser-induced etching: surprisingly, not the shortest pulse duration is best suited for the SLE process. Secondly we investigated the scaling of the writing velocity: a faster writing speed results in higher selectivity and thus higher precision of the resulting structures, so the SLE process is now even suitable for the mass production of 3D structures. Finally we programmed a printer driver for commercial CAD software enabling the automated production of complex 3D glass parts as new examples for lab-on-a-chip applications such as nested nozzles, connectors and a cell-sorting structure.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/mi8040110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2017-04, Vol.8 (4), p.110
issn 2072-666X
2072-666X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6190087
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Chemical etching
Complexity
Connectors
Etching
Fused silica
Lasers
Mass production
Pulse duration
Silica glass
Ultrafast lasers
title Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Laser-Induced%20Etching%20of%203D%20Precision%20Quartz%20Glass%20Components%20for%20Microfluidic%20Applications%E2%80%94Up-Scaling%20of%20Complexity%20and%20Speed&rft.jtitle=Micromachines%20(Basel)&rft.au=Gottmann,%20Jens&rft.date=2017-04-01&rft.volume=8&rft.issue=4&rft.spage=110&rft.pages=110-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi8040110&rft_dat=%3Cproquest_pubme%3E1899830142%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899830142&rft_id=info:pmid/&rfr_iscdi=true