Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor
The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2018-10, Vol.293 (41), p.15777-15789 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15789 |
---|---|
container_issue | 41 |
container_start_page | 15777 |
container_title | The Journal of biological chemistry |
container_volume | 293 |
creator | Wong, Lilian L.L. Scott, Daniel James Hossain, Mohammed Akhter Kaas, Quentin Rosengren, K. Johan Bathgate, Ross A.D. |
description | The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood–brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure–activity data for relaxin-3 and a peptide RXFP3 antagonist termed R3 B1–22R to guide receptor mutagenesis and develop models of their binding modes. RXFP3 residues were alanine-substituted individually and in combination and tested in cell-based binding and functional assays to refine models of agonist and antagonist binding to active- and inactive-state homology models of RXFP3, respectively. These models suggested that both agonists and antagonists interact with RXFP3 via similar residues in their B-chain central helix. The models further suggested that the B-chain Trp27 inserts into the binding pocket of RXFP3 and interacts with Trp138 and Lys271, the latter through a salt bridge with the C-terminal carboxyl group of Trp27 in relaxin-3. R3 B1–22R, which does not contain Trp27, used a non-native Arg23 residue to form cation–π and salt-bridge interactions with Trp138 and Glu141 in RXFP3, explaining a key contribution of Arg23 to affinity. Overall, relaxin-3 and R3 B1–22R appear to share similar binding residues but may differ in binding modes, leading to active and inactive RXFP3 conformational states, respectively. These mechanistic insights may assist structure-based drug design of smaller relaxin-3 mimetics to manage neurological disorders. |
doi_str_mv | 10.1074/jbc.RA118.002645 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6187618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820351218</els_id><sourcerecordid>30131340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-23ad3f0b0ac2176888f6b0b07f980f0a7ad1893a47d3a03792a8d01a7e8434eb3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWj_uniRHPWxNNmmT9SAUv0FQRMFbmE2yNbLNrkks-t8brRY9GBiGmbz3Qn4I7VIypETww-daD-8mlMohIeWYj1bQgBLJCjaij6tokJe0qMqR3ECbMT6TfHhF19EGI5RRxskAvZy6mJzXCdevCXdzG1roe-enuHbefPboko24azBMO5_FGLzJlZZjwunJ4mBbeHMeNzBz7TvubZ-csZjh_bvH81t2kAU677qwjdYaaKPd-e5b6OH87P7ksri-ubg6mVwXmnORipKBYQ2pCeiSirGUshnXeRRNJUlDQIChsmLAhWFAmKhKkIZQEFZyxm3NttDxIrd_rWfWaOtTgFb1wc0gvKsOnPp7492TmnZzNaZS5MoBZBGgQxdjsM3SS4n6xK8yfvWFXy3wZ8ve7zeXhh_eWXC0ENj887mzQUXtrNfWuMwnKdO5_9M_ANnjlqs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wong, Lilian L.L. ; Scott, Daniel James ; Hossain, Mohammed Akhter ; Kaas, Quentin ; Rosengren, K. Johan ; Bathgate, Ross A.D.</creator><creatorcontrib>Wong, Lilian L.L. ; Scott, Daniel James ; Hossain, Mohammed Akhter ; Kaas, Quentin ; Rosengren, K. Johan ; Bathgate, Ross A.D.</creatorcontrib><description>The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood–brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure–activity data for relaxin-3 and a peptide RXFP3 antagonist termed R3 B1–22R to guide receptor mutagenesis and develop models of their binding modes. RXFP3 residues were alanine-substituted individually and in combination and tested in cell-based binding and functional assays to refine models of agonist and antagonist binding to active- and inactive-state homology models of RXFP3, respectively. These models suggested that both agonists and antagonists interact with RXFP3 via similar residues in their B-chain central helix. The models further suggested that the B-chain Trp27 inserts into the binding pocket of RXFP3 and interacts with Trp138 and Lys271, the latter through a salt bridge with the C-terminal carboxyl group of Trp27 in relaxin-3. R3 B1–22R, which does not contain Trp27, used a non-native Arg23 residue to form cation–π and salt-bridge interactions with Trp138 and Glu141 in RXFP3, explaining a key contribution of Arg23 to affinity. Overall, relaxin-3 and R3 B1–22R appear to share similar binding residues but may differ in binding modes, leading to active and inactive RXFP3 conformational states, respectively. These mechanistic insights may assist structure-based drug design of smaller relaxin-3 mimetics to manage neurological disorders.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.002645</identifier><identifier>PMID: 30131340</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Binding Sites ; G protein-coupled receptor (GPCR) ; HEK293 Cells ; Humans ; molecular docking ; Molecular Docking Simulation ; molecular modeling ; Mutagenesis, Site-Directed ; Peptides - chemical synthesis ; Peptides - chemistry ; Peptides - metabolism ; Protein Binding ; Receptors, G-Protein-Coupled - agonists ; Receptors, G-Protein-Coupled - antagonists & inhibitors ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; relaxin ; Relaxin - chemical synthesis ; Relaxin - chemistry ; Relaxin - metabolism ; relaxin-3 ; RXFP3 ; Signal Transduction ; site-directed mutagenesis ; Static Electricity</subject><ispartof>The Journal of biological chemistry, 2018-10, Vol.293 (41), p.15777-15789</ispartof><rights>2018 © 2018 Wong et al.</rights><rights>2018 Wong et al.</rights><rights>2018 Wong et al. 2018 Wong et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-23ad3f0b0ac2176888f6b0b07f980f0a7ad1893a47d3a03792a8d01a7e8434eb3</citedby><cites>FETCH-LOGICAL-c447t-23ad3f0b0ac2176888f6b0b07f980f0a7ad1893a47d3a03792a8d01a7e8434eb3</cites><orcidid>0000-0002-5007-8434 ; 0000-0001-6301-861X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187618/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187618/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30131340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, Lilian L.L.</creatorcontrib><creatorcontrib>Scott, Daniel James</creatorcontrib><creatorcontrib>Hossain, Mohammed Akhter</creatorcontrib><creatorcontrib>Kaas, Quentin</creatorcontrib><creatorcontrib>Rosengren, K. Johan</creatorcontrib><creatorcontrib>Bathgate, Ross A.D.</creatorcontrib><title>Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood–brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure–activity data for relaxin-3 and a peptide RXFP3 antagonist termed R3 B1–22R to guide receptor mutagenesis and develop models of their binding modes. RXFP3 residues were alanine-substituted individually and in combination and tested in cell-based binding and functional assays to refine models of agonist and antagonist binding to active- and inactive-state homology models of RXFP3, respectively. These models suggested that both agonists and antagonists interact with RXFP3 via similar residues in their B-chain central helix. The models further suggested that the B-chain Trp27 inserts into the binding pocket of RXFP3 and interacts with Trp138 and Lys271, the latter through a salt bridge with the C-terminal carboxyl group of Trp27 in relaxin-3. R3 B1–22R, which does not contain Trp27, used a non-native Arg23 residue to form cation–π and salt-bridge interactions with Trp138 and Glu141 in RXFP3, explaining a key contribution of Arg23 to affinity. Overall, relaxin-3 and R3 B1–22R appear to share similar binding residues but may differ in binding modes, leading to active and inactive RXFP3 conformational states, respectively. These mechanistic insights may assist structure-based drug design of smaller relaxin-3 mimetics to manage neurological disorders.</description><subject>Binding Sites</subject><subject>G protein-coupled receptor (GPCR)</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>molecular modeling</subject><subject>Mutagenesis, Site-Directed</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Protein Binding</subject><subject>Receptors, G-Protein-Coupled - agonists</subject><subject>Receptors, G-Protein-Coupled - antagonists & inhibitors</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>relaxin</subject><subject>Relaxin - chemical synthesis</subject><subject>Relaxin - chemistry</subject><subject>Relaxin - metabolism</subject><subject>relaxin-3</subject><subject>RXFP3</subject><subject>Signal Transduction</subject><subject>site-directed mutagenesis</subject><subject>Static Electricity</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LAzEQxYMoWj_uniRHPWxNNmmT9SAUv0FQRMFbmE2yNbLNrkks-t8brRY9GBiGmbz3Qn4I7VIypETww-daD-8mlMohIeWYj1bQgBLJCjaij6tokJe0qMqR3ECbMT6TfHhF19EGI5RRxskAvZy6mJzXCdevCXdzG1roe-enuHbefPboko24azBMO5_FGLzJlZZjwunJ4mBbeHMeNzBz7TvubZ-csZjh_bvH81t2kAU677qwjdYaaKPd-e5b6OH87P7ksri-ubg6mVwXmnORipKBYQ2pCeiSirGUshnXeRRNJUlDQIChsmLAhWFAmKhKkIZQEFZyxm3NttDxIrd_rWfWaOtTgFb1wc0gvKsOnPp7492TmnZzNaZS5MoBZBGgQxdjsM3SS4n6xK8yfvWFXy3wZ8ve7zeXhh_eWXC0ENj887mzQUXtrNfWuMwnKdO5_9M_ANnjlqs</recordid><startdate>20181012</startdate><enddate>20181012</enddate><creator>Wong, Lilian L.L.</creator><creator>Scott, Daniel James</creator><creator>Hossain, Mohammed Akhter</creator><creator>Kaas, Quentin</creator><creator>Rosengren, K. Johan</creator><creator>Bathgate, Ross A.D.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5007-8434</orcidid><orcidid>https://orcid.org/0000-0001-6301-861X</orcidid></search><sort><creationdate>20181012</creationdate><title>Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor</title><author>Wong, Lilian L.L. ; Scott, Daniel James ; Hossain, Mohammed Akhter ; Kaas, Quentin ; Rosengren, K. Johan ; Bathgate, Ross A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-23ad3f0b0ac2176888f6b0b07f980f0a7ad1893a47d3a03792a8d01a7e8434eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binding Sites</topic><topic>G protein-coupled receptor (GPCR)</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>molecular modeling</topic><topic>Mutagenesis, Site-Directed</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Protein Binding</topic><topic>Receptors, G-Protein-Coupled - agonists</topic><topic>Receptors, G-Protein-Coupled - antagonists & inhibitors</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>relaxin</topic><topic>Relaxin - chemical synthesis</topic><topic>Relaxin - chemistry</topic><topic>Relaxin - metabolism</topic><topic>relaxin-3</topic><topic>RXFP3</topic><topic>Signal Transduction</topic><topic>site-directed mutagenesis</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Lilian L.L.</creatorcontrib><creatorcontrib>Scott, Daniel James</creatorcontrib><creatorcontrib>Hossain, Mohammed Akhter</creatorcontrib><creatorcontrib>Kaas, Quentin</creatorcontrib><creatorcontrib>Rosengren, K. Johan</creatorcontrib><creatorcontrib>Bathgate, Ross A.D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Lilian L.L.</au><au>Scott, Daniel James</au><au>Hossain, Mohammed Akhter</au><au>Kaas, Quentin</au><au>Rosengren, K. Johan</au><au>Bathgate, Ross A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-10-12</date><risdate>2018</risdate><volume>293</volume><issue>41</issue><spage>15777</spage><epage>15789</epage><pages>15777-15789</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood–brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure–activity data for relaxin-3 and a peptide RXFP3 antagonist termed R3 B1–22R to guide receptor mutagenesis and develop models of their binding modes. RXFP3 residues were alanine-substituted individually and in combination and tested in cell-based binding and functional assays to refine models of agonist and antagonist binding to active- and inactive-state homology models of RXFP3, respectively. These models suggested that both agonists and antagonists interact with RXFP3 via similar residues in their B-chain central helix. The models further suggested that the B-chain Trp27 inserts into the binding pocket of RXFP3 and interacts with Trp138 and Lys271, the latter through a salt bridge with the C-terminal carboxyl group of Trp27 in relaxin-3. R3 B1–22R, which does not contain Trp27, used a non-native Arg23 residue to form cation–π and salt-bridge interactions with Trp138 and Glu141 in RXFP3, explaining a key contribution of Arg23 to affinity. Overall, relaxin-3 and R3 B1–22R appear to share similar binding residues but may differ in binding modes, leading to active and inactive RXFP3 conformational states, respectively. These mechanistic insights may assist structure-based drug design of smaller relaxin-3 mimetics to manage neurological disorders.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30131340</pmid><doi>10.1074/jbc.RA118.002645</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5007-8434</orcidid><orcidid>https://orcid.org/0000-0001-6301-861X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2018-10, Vol.293 (41), p.15777-15789 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6187618 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Binding Sites G protein-coupled receptor (GPCR) HEK293 Cells Humans molecular docking Molecular Docking Simulation molecular modeling Mutagenesis, Site-Directed Peptides - chemical synthesis Peptides - chemistry Peptides - metabolism Protein Binding Receptors, G-Protein-Coupled - agonists Receptors, G-Protein-Coupled - antagonists & inhibitors Receptors, G-Protein-Coupled - genetics Receptors, G-Protein-Coupled - metabolism relaxin Relaxin - chemical synthesis Relaxin - chemistry Relaxin - metabolism relaxin-3 RXFP3 Signal Transduction site-directed mutagenesis Static Electricity |
title | Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20but%20overlapping%20binding%20sites%20of%20agonist%20and%20antagonist%20at%20the%20relaxin%20family%20peptide%203%20(RXFP3)%20receptor&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Wong,%20Lilian%20L.L.&rft.date=2018-10-12&rft.volume=293&rft.issue=41&rft.spage=15777&rft.epage=15789&rft.pages=15777-15789&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.002645&rft_dat=%3Cpubmed_cross%3E30131340%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30131340&rft_els_id=S0021925820351218&rfr_iscdi=true |