Micro Fabry-Pérot Interferometer at Rayleigh Range

The Fabry-Pérot interferometer is used in a variety of high-precision optical interferometry applications, such as gravitational wave detection. It is also used in various types of laser resonators to act as a narrow band filter. In addition, ultra-compact Fabry-Pérot interferometers are used in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-10, Vol.8 (1), p.15193-6, Article 15193
Hauptverfasser: Tsujiie, Yusuke, Kawamura, Yoshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 1
container_start_page 15193
container_title Scientific reports
container_volume 8
creator Tsujiie, Yusuke
Kawamura, Yoshiyuki
description The Fabry-Pérot interferometer is used in a variety of high-precision optical interferometry applications, such as gravitational wave detection. It is also used in various types of laser resonators to act as a narrow band filter. In addition, ultra-compact Fabry-Pérot interferometers are used in the optical resonators of semiconductor lasers and fiber-optic systems. In this work, we developed a micro-scale Fabry-Pérot interferometer that was constructed within the Rayleigh range of the optical focusing system. The high precision that is conventionally required for the optical parallelism and the surface accuracy of the mirrors was not so critical for this type of Fabry-Pérot interferometer. The interferometer was constructed using a gold-coated silicon microcantilever with reflectivity of 92% and a dielectric multilayer flat mirror with reflectivity of 85%. The focal spot size of the laser beam is 20 μm and the cavity length is approximately 20 μm. The finesse was measured to be approximately 25. The interferometric characteristics of the device were consistent with the theoretically calculated performance. The developed micro Fabry-Pérot interferometer has the potential to make a marked contribution to advances in optical measurements in various micro sensing system.
doi_str_mv 10.1038/s41598-018-33665-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6185920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118788966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-228b6736b1a54c91450e7bf2853606ba30e59a816f50b01ec964a4df6d2727713</originalsourceid><addsrcrecordid>eNp9kc1KAzEUhYMottS-gAsZcOMmmv9JNoKI1UJFEV2HzDTTTpmfmswIfSSfwxczdWqtLswmB-53T3LvAeAYo3OMqLzwDHMlIcISUioEh3IP9AliHBJKyP6O7oGh9wsUDieKYXUIehRRzAlCfUDv89TV0cgkbgUfP95d3UTjqrEus64ubRCRaaInsypsPpsHUc3sETjITOHtcHMPwMvo5vn6Dk4ebsfXVxOYspg1kBCZiJiKBBvOUoUZRzZOMiI5FUgkhiLLlZFYZBwlCNtUCWbYNBNTEpM4xnQALjvfZZuUdpraqnGm0EuXl8atdG1y_btS5XM9q9-0wJIrgoLB2cbA1a-t9Y0uc5_aojCVrVuvCcZKEU4pC-jpH3RRt64K460pGUuphAgU6aiwM--dzbafwUivY9FdLDrEor9i0TI0neyOsW35DiEAtAN8KIX9up-3_7H9BOMslrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118788966</pqid></control><display><type>article</type><title>Micro Fabry-Pérot Interferometer at Rayleigh Range</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tsujiie, Yusuke ; Kawamura, Yoshiyuki</creator><creatorcontrib>Tsujiie, Yusuke ; Kawamura, Yoshiyuki</creatorcontrib><description>The Fabry-Pérot interferometer is used in a variety of high-precision optical interferometry applications, such as gravitational wave detection. It is also used in various types of laser resonators to act as a narrow band filter. In addition, ultra-compact Fabry-Pérot interferometers are used in the optical resonators of semiconductor lasers and fiber-optic systems. In this work, we developed a micro-scale Fabry-Pérot interferometer that was constructed within the Rayleigh range of the optical focusing system. The high precision that is conventionally required for the optical parallelism and the surface accuracy of the mirrors was not so critical for this type of Fabry-Pérot interferometer. The interferometer was constructed using a gold-coated silicon microcantilever with reflectivity of 92% and a dielectric multilayer flat mirror with reflectivity of 85%. The focal spot size of the laser beam is 20 μm and the cavity length is approximately 20 μm. The finesse was measured to be approximately 25. The interferometric characteristics of the device were consistent with the theoretically calculated performance. The developed micro Fabry-Pérot interferometer has the potential to make a marked contribution to advances in optical measurements in various micro sensing system.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-33665-8</identifier><identifier>PMID: 30315200</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/124 ; 639/624/1111/1116 ; 639/624/400/1113 ; Gravitational waves ; Gravity ; Humanities and Social Sciences ; Interferometry ; Lasers ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2018-10, Vol.8 (1), p.15193-6, Article 15193</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-228b6736b1a54c91450e7bf2853606ba30e59a816f50b01ec964a4df6d2727713</citedby><cites>FETCH-LOGICAL-c474t-228b6736b1a54c91450e7bf2853606ba30e59a816f50b01ec964a4df6d2727713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6185920/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6185920/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30315200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsujiie, Yusuke</creatorcontrib><creatorcontrib>Kawamura, Yoshiyuki</creatorcontrib><title>Micro Fabry-Pérot Interferometer at Rayleigh Range</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The Fabry-Pérot interferometer is used in a variety of high-precision optical interferometry applications, such as gravitational wave detection. It is also used in various types of laser resonators to act as a narrow band filter. In addition, ultra-compact Fabry-Pérot interferometers are used in the optical resonators of semiconductor lasers and fiber-optic systems. In this work, we developed a micro-scale Fabry-Pérot interferometer that was constructed within the Rayleigh range of the optical focusing system. The high precision that is conventionally required for the optical parallelism and the surface accuracy of the mirrors was not so critical for this type of Fabry-Pérot interferometer. The interferometer was constructed using a gold-coated silicon microcantilever with reflectivity of 92% and a dielectric multilayer flat mirror with reflectivity of 85%. The focal spot size of the laser beam is 20 μm and the cavity length is approximately 20 μm. The finesse was measured to be approximately 25. The interferometric characteristics of the device were consistent with the theoretically calculated performance. The developed micro Fabry-Pérot interferometer has the potential to make a marked contribution to advances in optical measurements in various micro sensing system.</description><subject>132/124</subject><subject>639/624/1111/1116</subject><subject>639/624/400/1113</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Humanities and Social Sciences</subject><subject>Interferometry</subject><subject>Lasers</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1KAzEUhYMottS-gAsZcOMmmv9JNoKI1UJFEV2HzDTTTpmfmswIfSSfwxczdWqtLswmB-53T3LvAeAYo3OMqLzwDHMlIcISUioEh3IP9AliHBJKyP6O7oGh9wsUDieKYXUIehRRzAlCfUDv89TV0cgkbgUfP95d3UTjqrEus64ubRCRaaInsypsPpsHUc3sETjITOHtcHMPwMvo5vn6Dk4ebsfXVxOYspg1kBCZiJiKBBvOUoUZRzZOMiI5FUgkhiLLlZFYZBwlCNtUCWbYNBNTEpM4xnQALjvfZZuUdpraqnGm0EuXl8atdG1y_btS5XM9q9-0wJIrgoLB2cbA1a-t9Y0uc5_aojCVrVuvCcZKEU4pC-jpH3RRt64K460pGUuphAgU6aiwM--dzbafwUivY9FdLDrEor9i0TI0neyOsW35DiEAtAN8KIX9up-3_7H9BOMslrQ</recordid><startdate>20181012</startdate><enddate>20181012</enddate><creator>Tsujiie, Yusuke</creator><creator>Kawamura, Yoshiyuki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181012</creationdate><title>Micro Fabry-Pérot Interferometer at Rayleigh Range</title><author>Tsujiie, Yusuke ; Kawamura, Yoshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-228b6736b1a54c91450e7bf2853606ba30e59a816f50b01ec964a4df6d2727713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>132/124</topic><topic>639/624/1111/1116</topic><topic>639/624/400/1113</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Humanities and Social Sciences</topic><topic>Interferometry</topic><topic>Lasers</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsujiie, Yusuke</creatorcontrib><creatorcontrib>Kawamura, Yoshiyuki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsujiie, Yusuke</au><au>Kawamura, Yoshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro Fabry-Pérot Interferometer at Rayleigh Range</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-10-12</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>15193</spage><epage>6</epage><pages>15193-6</pages><artnum>15193</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The Fabry-Pérot interferometer is used in a variety of high-precision optical interferometry applications, such as gravitational wave detection. It is also used in various types of laser resonators to act as a narrow band filter. In addition, ultra-compact Fabry-Pérot interferometers are used in the optical resonators of semiconductor lasers and fiber-optic systems. In this work, we developed a micro-scale Fabry-Pérot interferometer that was constructed within the Rayleigh range of the optical focusing system. The high precision that is conventionally required for the optical parallelism and the surface accuracy of the mirrors was not so critical for this type of Fabry-Pérot interferometer. The interferometer was constructed using a gold-coated silicon microcantilever with reflectivity of 92% and a dielectric multilayer flat mirror with reflectivity of 85%. The focal spot size of the laser beam is 20 μm and the cavity length is approximately 20 μm. The finesse was measured to be approximately 25. The interferometric characteristics of the device were consistent with the theoretically calculated performance. The developed micro Fabry-Pérot interferometer has the potential to make a marked contribution to advances in optical measurements in various micro sensing system.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30315200</pmid><doi>10.1038/s41598-018-33665-8</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-10, Vol.8 (1), p.15193-6, Article 15193
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6185920
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 132/124
639/624/1111/1116
639/624/400/1113
Gravitational waves
Gravity
Humanities and Social Sciences
Interferometry
Lasers
multidisciplinary
Science
Science (multidisciplinary)
title Micro Fabry-Pérot Interferometer at Rayleigh Range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro%20Fabry-P%C3%A9rot%20Interferometer%20at%20Rayleigh%20Range&rft.jtitle=Scientific%20reports&rft.au=Tsujiie,%20Yusuke&rft.date=2018-10-12&rft.volume=8&rft.issue=1&rft.spage=15193&rft.epage=6&rft.pages=15193-6&rft.artnum=15193&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-33665-8&rft_dat=%3Cproquest_pubme%3E2118788966%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118788966&rft_id=info:pmid/30315200&rfr_iscdi=true