Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP‐family flippases
Summary Bacteria produce a variety of surface‐exposed polysaccharides important for cell integrity, biofilm formation and evasion of the host immune response. Synthesis of these polymers often involves the assembly of monomer oligosaccharide units on the lipid carrier undecaprenyl‐phosphate at the i...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2018-09, Vol.109 (5), p.633-641 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 641 |
---|---|
container_issue | 5 |
container_start_page | 633 |
container_title | Molecular microbiology |
container_volume | 109 |
creator | Sham, Lok‐To Zheng, Sanduo Yakhnina, Anastasiya A Kruse, Andrew C Bernhardt, Thomas G |
description | Summary
Bacteria produce a variety of surface‐exposed polysaccharides important for cell integrity, biofilm formation and evasion of the host immune response. Synthesis of these polymers often involves the assembly of monomer oligosaccharide units on the lipid carrier undecaprenyl‐phosphate at the inner face of the cytoplasmic membrane. For many polymers, including cell wall peptidoglycan, the lipid‐linked precursors must be transported across the membrane by flippases to facilitate polymerization at the membrane surface. Flippase activity for this class of polysaccharides is most often attributed to MOP (Multidrug/Oligosaccharidyl‐lipid/Polysaccharide) family proteins. Little is known about how this ubiquitous class of transporters identifies and translocates its cognate precursor over the many different types of lipid‐linked oligosaccharides produced by a given bacterial cell. To investigate the specificity determinants of MOP proteins, we selected for variants of the WzxC flippase involved in Escherichia coli capsule (colanic acid) synthesis that can substitute for the essential MurJ MOP‐family protein and promote transport of cell wall peptidoglycan precursors. Variants with substitutions predicted to destabilize the inward‐open conformation of WzxC lost substrate specificity and supported both capsule and peptidoglycan synthesis. Our results thus suggest that specific substrate recognition by a MOP transporter normally destabilizes the inward‐open state, promoting transition to the outward‐open conformation and concomitant substrate translocation. Furthermore, the ability of WzxC variants to suppress MurJ inactivation provides strong support for the designation of MurJ as the flippase for peptidoglycan precursors, the identity of which has been controversial.
From cell walls in bacteria to protein glycosylation in eukaryotes, surface exposed polysaccharides are built on polyprenol‐phosphate lipid carriers. Monomer units are typically assembled at the cytoplasmic face of the membrane and require translocation to the cell surface for polymerization/assembly. MOP‐family proteins are a major class of transporters associated with this flippase activity, and in this report we present evidence that transport proceeds via destabilization of the inward‐open state of the transporter by specific substrate binding. |
doi_str_mv | 10.1111/mmi.14002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6181778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117784177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4432-7cf0610dbac0e496cb0eb4981fab80e4365a920bb26e7e3b47f3c393780edb323</originalsourceid><addsrcrecordid>eNp1kbtuFDEUhi1ERJZAwQsgSzRQTOLL3NwgoRWXSLsKBQg6y_aemXU0Yw-2J2GpaOh5Rp4kTjZEgIQLW-ecT7_-4x-hJ5Qc03xOxtEe05IQdg8tKK-rgomqvY8WRFSk4C37fIgexnhOCOWk5g_QIROCNKKhC_Rj5WPEvsNxAmM7a2za4QsVrHLppv_p29cljnPfQ0w4bVXKhY4pqAQ4gPG9s8l6h23Exs_TABt8adMWZ8LFyYcEAfsJnHU9tg6vz97_-v6zU6Mddrgb7DSpCPEROujUEOHx7XuEPr55_WH5rlidvT1dvloVpiw5KxrTkZqSjVaGQClqownoUrS0U7rNnby6EoxozWpogOuy6bjhgjd5uNGc8SP0cq87zXqEjQGXbQ5yCnZUYSe9svLvibNb2fsLWdOWNk2bBZ7fCgT_Zc5fIkcbDQyDcuDnKBmpai5KVomMPvsHPfdzcHk9yei1WJmvTL3YUybkIAJ0d2YokdfhyhyuvAk3s0__dH9H_k4zAyd74NIOsPu_klyvT_eSV_nTsvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117784177</pqid></control><display><type>article</type><title>Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP‐family flippases</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><creator>Sham, Lok‐To ; Zheng, Sanduo ; Yakhnina, Anastasiya A ; Kruse, Andrew C ; Bernhardt, Thomas G</creator><creatorcontrib>Sham, Lok‐To ; Zheng, Sanduo ; Yakhnina, Anastasiya A ; Kruse, Andrew C ; Bernhardt, Thomas G</creatorcontrib><description>Summary
Bacteria produce a variety of surface‐exposed polysaccharides important for cell integrity, biofilm formation and evasion of the host immune response. Synthesis of these polymers often involves the assembly of monomer oligosaccharide units on the lipid carrier undecaprenyl‐phosphate at the inner face of the cytoplasmic membrane. For many polymers, including cell wall peptidoglycan, the lipid‐linked precursors must be transported across the membrane by flippases to facilitate polymerization at the membrane surface. Flippase activity for this class of polysaccharides is most often attributed to MOP (Multidrug/Oligosaccharidyl‐lipid/Polysaccharide) family proteins. Little is known about how this ubiquitous class of transporters identifies and translocates its cognate precursor over the many different types of lipid‐linked oligosaccharides produced by a given bacterial cell. To investigate the specificity determinants of MOP proteins, we selected for variants of the WzxC flippase involved in Escherichia coli capsule (colanic acid) synthesis that can substitute for the essential MurJ MOP‐family protein and promote transport of cell wall peptidoglycan precursors. Variants with substitutions predicted to destabilize the inward‐open conformation of WzxC lost substrate specificity and supported both capsule and peptidoglycan synthesis. Our results thus suggest that specific substrate recognition by a MOP transporter normally destabilizes the inward‐open state, promoting transition to the outward‐open conformation and concomitant substrate translocation. Furthermore, the ability of WzxC variants to suppress MurJ inactivation provides strong support for the designation of MurJ as the flippase for peptidoglycan precursors, the identity of which has been controversial.
From cell walls in bacteria to protein glycosylation in eukaryotes, surface exposed polysaccharides are built on polyprenol‐phosphate lipid carriers. Monomer units are typically assembled at the cytoplasmic face of the membrane and require translocation to the cell surface for polymerization/assembly. MOP‐family proteins are a major class of transporters associated with this flippase activity, and in this report we present evidence that transport proceeds via destabilization of the inward‐open state of the transporter by specific substrate binding.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.14002</identifier><identifier>PMID: 29907971</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacterial Capsules - metabolism ; Biofilms ; Biological Transport ; Cell Wall - physiology ; Cell walls ; Chemical synthesis ; Cytoplasmic membranes ; Deactivation ; E coli ; Escherichia coli - genetics ; Escherichia coli - physiology ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Immune response ; Immune system ; Inactivation ; Lipids ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Models, Molecular ; Mutation ; Oligosaccharides ; Peptidoglycans ; Phospholipid Transfer Proteins - chemistry ; Phospholipid Transfer Proteins - genetics ; Phospholipid Transfer Proteins - metabolism ; Polymerization ; Polymers ; Polysaccharides ; Polysaccharides - biosynthesis ; Precursors ; Protein Conformation ; Protein transport ; Proteins ; Recognition ; Saccharides ; Substrate specificity ; Substrates ; Translocation ; Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives ; Uridine Diphosphate N-Acetylmuramic Acid - metabolism</subject><ispartof>Molecular microbiology, 2018-09, Vol.109 (5), p.633-641</ispartof><rights>2018 John Wiley & Sons Ltd</rights><rights>2018 John Wiley & Sons Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4432-7cf0610dbac0e496cb0eb4981fab80e4365a920bb26e7e3b47f3c393780edb323</citedby><cites>FETCH-LOGICAL-c4432-7cf0610dbac0e496cb0eb4981fab80e4365a920bb26e7e3b47f3c393780edb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.14002$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.14002$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,1430,27911,27912,45561,45562,46396,46820</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29907971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sham, Lok‐To</creatorcontrib><creatorcontrib>Zheng, Sanduo</creatorcontrib><creatorcontrib>Yakhnina, Anastasiya A</creatorcontrib><creatorcontrib>Kruse, Andrew C</creatorcontrib><creatorcontrib>Bernhardt, Thomas G</creatorcontrib><title>Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP‐family flippases</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
Bacteria produce a variety of surface‐exposed polysaccharides important for cell integrity, biofilm formation and evasion of the host immune response. Synthesis of these polymers often involves the assembly of monomer oligosaccharide units on the lipid carrier undecaprenyl‐phosphate at the inner face of the cytoplasmic membrane. For many polymers, including cell wall peptidoglycan, the lipid‐linked precursors must be transported across the membrane by flippases to facilitate polymerization at the membrane surface. Flippase activity for this class of polysaccharides is most often attributed to MOP (Multidrug/Oligosaccharidyl‐lipid/Polysaccharide) family proteins. Little is known about how this ubiquitous class of transporters identifies and translocates its cognate precursor over the many different types of lipid‐linked oligosaccharides produced by a given bacterial cell. To investigate the specificity determinants of MOP proteins, we selected for variants of the WzxC flippase involved in Escherichia coli capsule (colanic acid) synthesis that can substitute for the essential MurJ MOP‐family protein and promote transport of cell wall peptidoglycan precursors. Variants with substitutions predicted to destabilize the inward‐open conformation of WzxC lost substrate specificity and supported both capsule and peptidoglycan synthesis. Our results thus suggest that specific substrate recognition by a MOP transporter normally destabilizes the inward‐open state, promoting transition to the outward‐open conformation and concomitant substrate translocation. Furthermore, the ability of WzxC variants to suppress MurJ inactivation provides strong support for the designation of MurJ as the flippase for peptidoglycan precursors, the identity of which has been controversial.
From cell walls in bacteria to protein glycosylation in eukaryotes, surface exposed polysaccharides are built on polyprenol‐phosphate lipid carriers. Monomer units are typically assembled at the cytoplasmic face of the membrane and require translocation to the cell surface for polymerization/assembly. MOP‐family proteins are a major class of transporters associated with this flippase activity, and in this report we present evidence that transport proceeds via destabilization of the inward‐open state of the transporter by specific substrate binding.</description><subject>Bacterial Capsules - metabolism</subject><subject>Biofilms</subject><subject>Biological Transport</subject><subject>Cell Wall - physiology</subject><subject>Cell walls</subject><subject>Chemical synthesis</subject><subject>Cytoplasmic membranes</subject><subject>Deactivation</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - physiology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Inactivation</subject><subject>Lipids</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Oligosaccharides</subject><subject>Peptidoglycans</subject><subject>Phospholipid Transfer Proteins - chemistry</subject><subject>Phospholipid Transfer Proteins - genetics</subject><subject>Phospholipid Transfer Proteins - metabolism</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Polysaccharides - biosynthesis</subject><subject>Precursors</subject><subject>Protein Conformation</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Recognition</subject><subject>Saccharides</subject><subject>Substrate specificity</subject><subject>Substrates</subject><subject>Translocation</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kbtuFDEUhi1ERJZAwQsgSzRQTOLL3NwgoRWXSLsKBQg6y_aemXU0Yw-2J2GpaOh5Rp4kTjZEgIQLW-ecT7_-4x-hJ5Qc03xOxtEe05IQdg8tKK-rgomqvY8WRFSk4C37fIgexnhOCOWk5g_QIROCNKKhC_Rj5WPEvsNxAmM7a2za4QsVrHLppv_p29cljnPfQ0w4bVXKhY4pqAQ4gPG9s8l6h23Exs_TABt8adMWZ8LFyYcEAfsJnHU9tg6vz97_-v6zU6Mddrgb7DSpCPEROujUEOHx7XuEPr55_WH5rlidvT1dvloVpiw5KxrTkZqSjVaGQClqownoUrS0U7rNnby6EoxozWpogOuy6bjhgjd5uNGc8SP0cq87zXqEjQGXbQ5yCnZUYSe9svLvibNb2fsLWdOWNk2bBZ7fCgT_Zc5fIkcbDQyDcuDnKBmpai5KVomMPvsHPfdzcHk9yei1WJmvTL3YUybkIAJ0d2YokdfhyhyuvAk3s0__dH9H_k4zAyd74NIOsPu_klyvT_eSV_nTsvA</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Sham, Lok‐To</creator><creator>Zheng, Sanduo</creator><creator>Yakhnina, Anastasiya A</creator><creator>Kruse, Andrew C</creator><creator>Bernhardt, Thomas G</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201809</creationdate><title>Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP‐family flippases</title><author>Sham, Lok‐To ; Zheng, Sanduo ; Yakhnina, Anastasiya A ; Kruse, Andrew C ; Bernhardt, Thomas G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4432-7cf0610dbac0e496cb0eb4981fab80e4365a920bb26e7e3b47f3c393780edb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacterial Capsules - metabolism</topic><topic>Biofilms</topic><topic>Biological Transport</topic><topic>Cell Wall - physiology</topic><topic>Cell walls</topic><topic>Chemical synthesis</topic><topic>Cytoplasmic membranes</topic><topic>Deactivation</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - physiology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Inactivation</topic><topic>Lipids</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Oligosaccharides</topic><topic>Peptidoglycans</topic><topic>Phospholipid Transfer Proteins - chemistry</topic><topic>Phospholipid Transfer Proteins - genetics</topic><topic>Phospholipid Transfer Proteins - metabolism</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Polysaccharides - biosynthesis</topic><topic>Precursors</topic><topic>Protein Conformation</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Recognition</topic><topic>Saccharides</topic><topic>Substrate specificity</topic><topic>Substrates</topic><topic>Translocation</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sham, Lok‐To</creatorcontrib><creatorcontrib>Zheng, Sanduo</creatorcontrib><creatorcontrib>Yakhnina, Anastasiya A</creatorcontrib><creatorcontrib>Kruse, Andrew C</creatorcontrib><creatorcontrib>Bernhardt, Thomas G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sham, Lok‐To</au><au>Zheng, Sanduo</au><au>Yakhnina, Anastasiya A</au><au>Kruse, Andrew C</au><au>Bernhardt, Thomas G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP‐family flippases</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2018-09</date><risdate>2018</risdate><volume>109</volume><issue>5</issue><spage>633</spage><epage>641</epage><pages>633-641</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
Bacteria produce a variety of surface‐exposed polysaccharides important for cell integrity, biofilm formation and evasion of the host immune response. Synthesis of these polymers often involves the assembly of monomer oligosaccharide units on the lipid carrier undecaprenyl‐phosphate at the inner face of the cytoplasmic membrane. For many polymers, including cell wall peptidoglycan, the lipid‐linked precursors must be transported across the membrane by flippases to facilitate polymerization at the membrane surface. Flippase activity for this class of polysaccharides is most often attributed to MOP (Multidrug/Oligosaccharidyl‐lipid/Polysaccharide) family proteins. Little is known about how this ubiquitous class of transporters identifies and translocates its cognate precursor over the many different types of lipid‐linked oligosaccharides produced by a given bacterial cell. To investigate the specificity determinants of MOP proteins, we selected for variants of the WzxC flippase involved in Escherichia coli capsule (colanic acid) synthesis that can substitute for the essential MurJ MOP‐family protein and promote transport of cell wall peptidoglycan precursors. Variants with substitutions predicted to destabilize the inward‐open conformation of WzxC lost substrate specificity and supported both capsule and peptidoglycan synthesis. Our results thus suggest that specific substrate recognition by a MOP transporter normally destabilizes the inward‐open state, promoting transition to the outward‐open conformation and concomitant substrate translocation. Furthermore, the ability of WzxC variants to suppress MurJ inactivation provides strong support for the designation of MurJ as the flippase for peptidoglycan precursors, the identity of which has been controversial.
From cell walls in bacteria to protein glycosylation in eukaryotes, surface exposed polysaccharides are built on polyprenol‐phosphate lipid carriers. Monomer units are typically assembled at the cytoplasmic face of the membrane and require translocation to the cell surface for polymerization/assembly. MOP‐family proteins are a major class of transporters associated with this flippase activity, and in this report we present evidence that transport proceeds via destabilization of the inward‐open state of the transporter by specific substrate binding.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>29907971</pmid><doi>10.1111/mmi.14002</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2018-09, Vol.109 (5), p.633-641 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6181778 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content |
subjects | Bacterial Capsules - metabolism Biofilms Biological Transport Cell Wall - physiology Cell walls Chemical synthesis Cytoplasmic membranes Deactivation E coli Escherichia coli - genetics Escherichia coli - physiology Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Immune response Immune system Inactivation Lipids Membrane Transport Proteins - chemistry Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Models, Molecular Mutation Oligosaccharides Peptidoglycans Phospholipid Transfer Proteins - chemistry Phospholipid Transfer Proteins - genetics Phospholipid Transfer Proteins - metabolism Polymerization Polymers Polysaccharides Polysaccharides - biosynthesis Precursors Protein Conformation Protein transport Proteins Recognition Saccharides Substrate specificity Substrates Translocation Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives Uridine Diphosphate N-Acetylmuramic Acid - metabolism |
title | Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP‐family flippases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20specificity%20variants%20of%20WzxC%20suggest%20that%20substrate%20recognition%20is%20coupled%20with%20transporter%20opening%20in%20MOP%E2%80%90family%20flippases&rft.jtitle=Molecular%20microbiology&rft.au=Sham,%20Lok%E2%80%90To&rft.date=2018-09&rft.volume=109&rft.issue=5&rft.spage=633&rft.epage=641&rft.pages=633-641&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.14002&rft_dat=%3Cproquest_pubme%3E2117784177%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117784177&rft_id=info:pmid/29907971&rfr_iscdi=true |