Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP‐family flippases

Summary Bacteria produce a variety of surface‐exposed polysaccharides important for cell integrity, biofilm formation and evasion of the host immune response. Synthesis of these polymers often involves the assembly of monomer oligosaccharide units on the lipid carrier undecaprenyl‐phosphate at the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2018-09, Vol.109 (5), p.633-641
Hauptverfasser: Sham, Lok‐To, Zheng, Sanduo, Yakhnina, Anastasiya A, Kruse, Andrew C, Bernhardt, Thomas G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 5
container_start_page 633
container_title Molecular microbiology
container_volume 109
creator Sham, Lok‐To
Zheng, Sanduo
Yakhnina, Anastasiya A
Kruse, Andrew C
Bernhardt, Thomas G
description Summary Bacteria produce a variety of surface‐exposed polysaccharides important for cell integrity, biofilm formation and evasion of the host immune response. Synthesis of these polymers often involves the assembly of monomer oligosaccharide units on the lipid carrier undecaprenyl‐phosphate at the inner face of the cytoplasmic membrane. For many polymers, including cell wall peptidoglycan, the lipid‐linked precursors must be transported across the membrane by flippases to facilitate polymerization at the membrane surface. Flippase activity for this class of polysaccharides is most often attributed to MOP (Multidrug/Oligosaccharidyl‐lipid/Polysaccharide) family proteins. Little is known about how this ubiquitous class of transporters identifies and translocates its cognate precursor over the many different types of lipid‐linked oligosaccharides produced by a given bacterial cell. To investigate the specificity determinants of MOP proteins, we selected for variants of the WzxC flippase involved in Escherichia coli capsule (colanic acid) synthesis that can substitute for the essential MurJ MOP‐family protein and promote transport of cell wall peptidoglycan precursors. Variants with substitutions predicted to destabilize the inward‐open conformation of WzxC lost substrate specificity and supported both capsule and peptidoglycan synthesis. Our results thus suggest that specific substrate recognition by a MOP transporter normally destabilizes the inward‐open state, promoting transition to the outward‐open conformation and concomitant substrate translocation. Furthermore, the ability of WzxC variants to suppress MurJ inactivation provides strong support for the designation of MurJ as the flippase for peptidoglycan precursors, the identity of which has been controversial. From cell walls in bacteria to protein glycosylation in eukaryotes, surface exposed polysaccharides are built on polyprenol‐phosphate lipid carriers. Monomer units are typically assembled at the cytoplasmic face of the membrane and require translocation to the cell surface for polymerization/assembly. MOP‐family proteins are a major class of transporters associated with this flippase activity, and in this report we present evidence that transport proceeds via destabilization of the inward‐open state of the transporter by specific substrate binding.
doi_str_mv 10.1111/mmi.14002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6181778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117784177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4432-7cf0610dbac0e496cb0eb4981fab80e4365a920bb26e7e3b47f3c393780edb323</originalsourceid><addsrcrecordid>eNp1kbtuFDEUhi1ERJZAwQsgSzRQTOLL3NwgoRWXSLsKBQg6y_aemXU0Yw-2J2GpaOh5Rp4kTjZEgIQLW-ecT7_-4x-hJ5Qc03xOxtEe05IQdg8tKK-rgomqvY8WRFSk4C37fIgexnhOCOWk5g_QIROCNKKhC_Rj5WPEvsNxAmM7a2za4QsVrHLppv_p29cljnPfQ0w4bVXKhY4pqAQ4gPG9s8l6h23Exs_TABt8adMWZ8LFyYcEAfsJnHU9tg6vz97_-v6zU6Mddrgb7DSpCPEROujUEOHx7XuEPr55_WH5rlidvT1dvloVpiw5KxrTkZqSjVaGQClqownoUrS0U7rNnby6EoxozWpogOuy6bjhgjd5uNGc8SP0cq87zXqEjQGXbQ5yCnZUYSe9svLvibNb2fsLWdOWNk2bBZ7fCgT_Zc5fIkcbDQyDcuDnKBmpai5KVomMPvsHPfdzcHk9yei1WJmvTL3YUybkIAJ0d2YokdfhyhyuvAk3s0__dH9H_k4zAyd74NIOsPu_klyvT_eSV_nTsvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117784177</pqid></control><display><type>article</type><title>Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP‐family flippases</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><creator>Sham, Lok‐To ; Zheng, Sanduo ; Yakhnina, Anastasiya A ; Kruse, Andrew C ; Bernhardt, Thomas G</creator><creatorcontrib>Sham, Lok‐To ; Zheng, Sanduo ; Yakhnina, Anastasiya A ; Kruse, Andrew C ; Bernhardt, Thomas G</creatorcontrib><description>Summary Bacteria produce a variety of surface‐exposed polysaccharides important for cell integrity, biofilm formation and evasion of the host immune response. Synthesis of these polymers often involves the assembly of monomer oligosaccharide units on the lipid carrier undecaprenyl‐phosphate at the inner face of the cytoplasmic membrane. For many polymers, including cell wall peptidoglycan, the lipid‐linked precursors must be transported across the membrane by flippases to facilitate polymerization at the membrane surface. Flippase activity for this class of polysaccharides is most often attributed to MOP (Multidrug/Oligosaccharidyl‐lipid/Polysaccharide) family proteins. Little is known about how this ubiquitous class of transporters identifies and translocates its cognate precursor over the many different types of lipid‐linked oligosaccharides produced by a given bacterial cell. To investigate the specificity determinants of MOP proteins, we selected for variants of the WzxC flippase involved in Escherichia coli capsule (colanic acid) synthesis that can substitute for the essential MurJ MOP‐family protein and promote transport of cell wall peptidoglycan precursors. Variants with substitutions predicted to destabilize the inward‐open conformation of WzxC lost substrate specificity and supported both capsule and peptidoglycan synthesis. Our results thus suggest that specific substrate recognition by a MOP transporter normally destabilizes the inward‐open state, promoting transition to the outward‐open conformation and concomitant substrate translocation. Furthermore, the ability of WzxC variants to suppress MurJ inactivation provides strong support for the designation of MurJ as the flippase for peptidoglycan precursors, the identity of which has been controversial. From cell walls in bacteria to protein glycosylation in eukaryotes, surface exposed polysaccharides are built on polyprenol‐phosphate lipid carriers. Monomer units are typically assembled at the cytoplasmic face of the membrane and require translocation to the cell surface for polymerization/assembly. MOP‐family proteins are a major class of transporters associated with this flippase activity, and in this report we present evidence that transport proceeds via destabilization of the inward‐open state of the transporter by specific substrate binding.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.14002</identifier><identifier>PMID: 29907971</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacterial Capsules - metabolism ; Biofilms ; Biological Transport ; Cell Wall - physiology ; Cell walls ; Chemical synthesis ; Cytoplasmic membranes ; Deactivation ; E coli ; Escherichia coli - genetics ; Escherichia coli - physiology ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Immune response ; Immune system ; Inactivation ; Lipids ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Models, Molecular ; Mutation ; Oligosaccharides ; Peptidoglycans ; Phospholipid Transfer Proteins - chemistry ; Phospholipid Transfer Proteins - genetics ; Phospholipid Transfer Proteins - metabolism ; Polymerization ; Polymers ; Polysaccharides ; Polysaccharides - biosynthesis ; Precursors ; Protein Conformation ; Protein transport ; Proteins ; Recognition ; Saccharides ; Substrate specificity ; Substrates ; Translocation ; Uridine Diphosphate N-Acetylmuramic Acid - analogs &amp; derivatives ; Uridine Diphosphate N-Acetylmuramic Acid - metabolism</subject><ispartof>Molecular microbiology, 2018-09, Vol.109 (5), p.633-641</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4432-7cf0610dbac0e496cb0eb4981fab80e4365a920bb26e7e3b47f3c393780edb323</citedby><cites>FETCH-LOGICAL-c4432-7cf0610dbac0e496cb0eb4981fab80e4365a920bb26e7e3b47f3c393780edb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.14002$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.14002$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,1430,27911,27912,45561,45562,46396,46820</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29907971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sham, Lok‐To</creatorcontrib><creatorcontrib>Zheng, Sanduo</creatorcontrib><creatorcontrib>Yakhnina, Anastasiya A</creatorcontrib><creatorcontrib>Kruse, Andrew C</creatorcontrib><creatorcontrib>Bernhardt, Thomas G</creatorcontrib><title>Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP‐family flippases</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Bacteria produce a variety of surface‐exposed polysaccharides important for cell integrity, biofilm formation and evasion of the host immune response. Synthesis of these polymers often involves the assembly of monomer oligosaccharide units on the lipid carrier undecaprenyl‐phosphate at the inner face of the cytoplasmic membrane. For many polymers, including cell wall peptidoglycan, the lipid‐linked precursors must be transported across the membrane by flippases to facilitate polymerization at the membrane surface. Flippase activity for this class of polysaccharides is most often attributed to MOP (Multidrug/Oligosaccharidyl‐lipid/Polysaccharide) family proteins. Little is known about how this ubiquitous class of transporters identifies and translocates its cognate precursor over the many different types of lipid‐linked oligosaccharides produced by a given bacterial cell. To investigate the specificity determinants of MOP proteins, we selected for variants of the WzxC flippase involved in Escherichia coli capsule (colanic acid) synthesis that can substitute for the essential MurJ MOP‐family protein and promote transport of cell wall peptidoglycan precursors. Variants with substitutions predicted to destabilize the inward‐open conformation of WzxC lost substrate specificity and supported both capsule and peptidoglycan synthesis. Our results thus suggest that specific substrate recognition by a MOP transporter normally destabilizes the inward‐open state, promoting transition to the outward‐open conformation and concomitant substrate translocation. Furthermore, the ability of WzxC variants to suppress MurJ inactivation provides strong support for the designation of MurJ as the flippase for peptidoglycan precursors, the identity of which has been controversial. From cell walls in bacteria to protein glycosylation in eukaryotes, surface exposed polysaccharides are built on polyprenol‐phosphate lipid carriers. Monomer units are typically assembled at the cytoplasmic face of the membrane and require translocation to the cell surface for polymerization/assembly. MOP‐family proteins are a major class of transporters associated with this flippase activity, and in this report we present evidence that transport proceeds via destabilization of the inward‐open state of the transporter by specific substrate binding.</description><subject>Bacterial Capsules - metabolism</subject><subject>Biofilms</subject><subject>Biological Transport</subject><subject>Cell Wall - physiology</subject><subject>Cell walls</subject><subject>Chemical synthesis</subject><subject>Cytoplasmic membranes</subject><subject>Deactivation</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - physiology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Inactivation</subject><subject>Lipids</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Oligosaccharides</subject><subject>Peptidoglycans</subject><subject>Phospholipid Transfer Proteins - chemistry</subject><subject>Phospholipid Transfer Proteins - genetics</subject><subject>Phospholipid Transfer Proteins - metabolism</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Polysaccharides - biosynthesis</subject><subject>Precursors</subject><subject>Protein Conformation</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Recognition</subject><subject>Saccharides</subject><subject>Substrate specificity</subject><subject>Substrates</subject><subject>Translocation</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - analogs &amp; derivatives</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kbtuFDEUhi1ERJZAwQsgSzRQTOLL3NwgoRWXSLsKBQg6y_aemXU0Yw-2J2GpaOh5Rp4kTjZEgIQLW-ecT7_-4x-hJ5Qc03xOxtEe05IQdg8tKK-rgomqvY8WRFSk4C37fIgexnhOCOWk5g_QIROCNKKhC_Rj5WPEvsNxAmM7a2za4QsVrHLppv_p29cljnPfQ0w4bVXKhY4pqAQ4gPG9s8l6h23Exs_TABt8adMWZ8LFyYcEAfsJnHU9tg6vz97_-v6zU6Mddrgb7DSpCPEROujUEOHx7XuEPr55_WH5rlidvT1dvloVpiw5KxrTkZqSjVaGQClqownoUrS0U7rNnby6EoxozWpogOuy6bjhgjd5uNGc8SP0cq87zXqEjQGXbQ5yCnZUYSe9svLvibNb2fsLWdOWNk2bBZ7fCgT_Zc5fIkcbDQyDcuDnKBmpai5KVomMPvsHPfdzcHk9yei1WJmvTL3YUybkIAJ0d2YokdfhyhyuvAk3s0__dH9H_k4zAyd74NIOsPu_klyvT_eSV_nTsvA</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Sham, Lok‐To</creator><creator>Zheng, Sanduo</creator><creator>Yakhnina, Anastasiya A</creator><creator>Kruse, Andrew C</creator><creator>Bernhardt, Thomas G</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201809</creationdate><title>Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP‐family flippases</title><author>Sham, Lok‐To ; Zheng, Sanduo ; Yakhnina, Anastasiya A ; Kruse, Andrew C ; Bernhardt, Thomas G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4432-7cf0610dbac0e496cb0eb4981fab80e4365a920bb26e7e3b47f3c393780edb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacterial Capsules - metabolism</topic><topic>Biofilms</topic><topic>Biological Transport</topic><topic>Cell Wall - physiology</topic><topic>Cell walls</topic><topic>Chemical synthesis</topic><topic>Cytoplasmic membranes</topic><topic>Deactivation</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - physiology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Inactivation</topic><topic>Lipids</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Oligosaccharides</topic><topic>Peptidoglycans</topic><topic>Phospholipid Transfer Proteins - chemistry</topic><topic>Phospholipid Transfer Proteins - genetics</topic><topic>Phospholipid Transfer Proteins - metabolism</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Polysaccharides - biosynthesis</topic><topic>Precursors</topic><topic>Protein Conformation</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Recognition</topic><topic>Saccharides</topic><topic>Substrate specificity</topic><topic>Substrates</topic><topic>Translocation</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - analogs &amp; derivatives</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sham, Lok‐To</creatorcontrib><creatorcontrib>Zheng, Sanduo</creatorcontrib><creatorcontrib>Yakhnina, Anastasiya A</creatorcontrib><creatorcontrib>Kruse, Andrew C</creatorcontrib><creatorcontrib>Bernhardt, Thomas G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sham, Lok‐To</au><au>Zheng, Sanduo</au><au>Yakhnina, Anastasiya A</au><au>Kruse, Andrew C</au><au>Bernhardt, Thomas G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP‐family flippases</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2018-09</date><risdate>2018</risdate><volume>109</volume><issue>5</issue><spage>633</spage><epage>641</epage><pages>633-641</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Bacteria produce a variety of surface‐exposed polysaccharides important for cell integrity, biofilm formation and evasion of the host immune response. Synthesis of these polymers often involves the assembly of monomer oligosaccharide units on the lipid carrier undecaprenyl‐phosphate at the inner face of the cytoplasmic membrane. For many polymers, including cell wall peptidoglycan, the lipid‐linked precursors must be transported across the membrane by flippases to facilitate polymerization at the membrane surface. Flippase activity for this class of polysaccharides is most often attributed to MOP (Multidrug/Oligosaccharidyl‐lipid/Polysaccharide) family proteins. Little is known about how this ubiquitous class of transporters identifies and translocates its cognate precursor over the many different types of lipid‐linked oligosaccharides produced by a given bacterial cell. To investigate the specificity determinants of MOP proteins, we selected for variants of the WzxC flippase involved in Escherichia coli capsule (colanic acid) synthesis that can substitute for the essential MurJ MOP‐family protein and promote transport of cell wall peptidoglycan precursors. Variants with substitutions predicted to destabilize the inward‐open conformation of WzxC lost substrate specificity and supported both capsule and peptidoglycan synthesis. Our results thus suggest that specific substrate recognition by a MOP transporter normally destabilizes the inward‐open state, promoting transition to the outward‐open conformation and concomitant substrate translocation. Furthermore, the ability of WzxC variants to suppress MurJ inactivation provides strong support for the designation of MurJ as the flippase for peptidoglycan precursors, the identity of which has been controversial. From cell walls in bacteria to protein glycosylation in eukaryotes, surface exposed polysaccharides are built on polyprenol‐phosphate lipid carriers. Monomer units are typically assembled at the cytoplasmic face of the membrane and require translocation to the cell surface for polymerization/assembly. MOP‐family proteins are a major class of transporters associated with this flippase activity, and in this report we present evidence that transport proceeds via destabilization of the inward‐open state of the transporter by specific substrate binding.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>29907971</pmid><doi>10.1111/mmi.14002</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2018-09, Vol.109 (5), p.633-641
issn 0950-382X
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6181778
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content
subjects Bacterial Capsules - metabolism
Biofilms
Biological Transport
Cell Wall - physiology
Cell walls
Chemical synthesis
Cytoplasmic membranes
Deactivation
E coli
Escherichia coli - genetics
Escherichia coli - physiology
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Immune response
Immune system
Inactivation
Lipids
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Models, Molecular
Mutation
Oligosaccharides
Peptidoglycans
Phospholipid Transfer Proteins - chemistry
Phospholipid Transfer Proteins - genetics
Phospholipid Transfer Proteins - metabolism
Polymerization
Polymers
Polysaccharides
Polysaccharides - biosynthesis
Precursors
Protein Conformation
Protein transport
Proteins
Recognition
Saccharides
Substrate specificity
Substrates
Translocation
Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives
Uridine Diphosphate N-Acetylmuramic Acid - metabolism
title Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP‐family flippases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20specificity%20variants%20of%20WzxC%20suggest%20that%20substrate%20recognition%20is%20coupled%20with%20transporter%20opening%20in%20MOP%E2%80%90family%20flippases&rft.jtitle=Molecular%20microbiology&rft.au=Sham,%20Lok%E2%80%90To&rft.date=2018-09&rft.volume=109&rft.issue=5&rft.spage=633&rft.epage=641&rft.pages=633-641&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.14002&rft_dat=%3Cproquest_pubme%3E2117784177%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117784177&rft_id=info:pmid/29907971&rfr_iscdi=true