High‐efficiency genome editing using a dmc1 promoter‐controlled CRISPR/Cas9 system in maize

Summary Previous studies revealed that the promoters for driving both Cas9 and sgRNAs are quite important for efficient genome editing by CRISPR/Cas9 in plants. Here, we report our results of targeted genome editing using the maize dmc1 gene promoter combined with the U3 promoter for Cas9 and sgRNA,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2018-11, Vol.16 (11), p.1848-1857
Hauptverfasser: Feng, Chao, Su, Handong, Bai, Han, Wang, Rui, Liu, Yalin, Guo, Xianrui, Liu, Chang, Zhang, Jing, Yuan, Jing, Birchler, James A., Han, Fangpu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1857
container_issue 11
container_start_page 1848
container_title Plant biotechnology journal
container_volume 16
creator Feng, Chao
Su, Handong
Bai, Han
Wang, Rui
Liu, Yalin
Guo, Xianrui
Liu, Chang
Zhang, Jing
Yuan, Jing
Birchler, James A.
Han, Fangpu
description Summary Previous studies revealed that the promoters for driving both Cas9 and sgRNAs are quite important for efficient genome editing by CRISPR/Cas9 in plants. Here, we report our results of targeted genome editing using the maize dmc1 gene promoter combined with the U3 promoter for Cas9 and sgRNA, respectively. Three loci in the maize genome were selected for targeting. The T0 plants regenerated were highly efficiently edited at the target sites with homozygous or bi‐allelic mutants accounting for about 66%. The mutations in T0 plants could be stably transmitted to the T1 generation, and new mutations could be generated in gametes or zygotes. Whole‐genome resequencing indicated that no off‐target mutations could be detected in the predicted loci with sequence similarity to the targeted site. Our results show that the dmc1 promoter‐controlled (DPC) CRISPR/Cas9 system is highly efficient in maize and provide further evidence that the optimization of the promoters used for the CRISPR/Cas9 system is important for enhancing the efficiency of targeted genome editing in plants. The evolutionary conservation of the dmc1 gene suggests its potential for use in other plant species.
doi_str_mv 10.1111/pbi.12920
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6181213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733243598</galeid><sourcerecordid>A733243598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5810-30db031123423e1f1f8f7ca96db79f3a41ebe375080e2deecb9f2fce3ef03ccb3</originalsourceid><addsrcrecordid>eNqFksFu1DAQhiMEoqVw4AWQJS5w2F2PHSfxBamsCl2pElWBs-U449RVYi9xAtqeeASekSfBS8oKkBC2ZFv2N_-Mf02WPQW6hDRW29otgUlG72XHkBfloiwEu3845_lR9ijGG0oZFKJ4mB0xKQpZMXGcqXPXXn__-g2tdcahNzvSog89Emzc6HxLprhfNWl6A2Q7hD6MOKQIE_w4hK7DhqyvNu8vr1ZrHSWJuzhiT5wnvXa3-Dh7YHUX8cndfpJ9fHP2YX2-uHj3drM-vVgYUQFdcNrUlAMwnjOOYMFWtjRaFk1dSst1DlgjLwWtKLIG0dTSMmuQo6XcmJqfZK9m3e1U99gYTMXpTm0H1-thp4J26s8X765VGz6rAipgwJPAizuBIXyaMI6qd9Fg12mPYYqKCZZKA5nn_0cpVBSS7zKhz_9Cb8I0-OSEYgBlJcqC7nMvZ6rVHSrnbUglmjQb7F3yGa1L96cl5yznQlYp4OUcYIYQ44D28FGgat8SKrWE-tkSiX32uzMH8lcPJGA1A19Slt2_ldTl680s-QPR3MIU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117857603</pqid></control><display><type>article</type><title>High‐efficiency genome editing using a dmc1 promoter‐controlled CRISPR/Cas9 system in maize</title><source>Wiley-Blackwell Open Access Collection</source><source>Wiley Online Library - AutoHoldings Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Feng, Chao ; Su, Handong ; Bai, Han ; Wang, Rui ; Liu, Yalin ; Guo, Xianrui ; Liu, Chang ; Zhang, Jing ; Yuan, Jing ; Birchler, James A. ; Han, Fangpu</creator><creatorcontrib>Feng, Chao ; Su, Handong ; Bai, Han ; Wang, Rui ; Liu, Yalin ; Guo, Xianrui ; Liu, Chang ; Zhang, Jing ; Yuan, Jing ; Birchler, James A. ; Han, Fangpu</creatorcontrib><description>Summary Previous studies revealed that the promoters for driving both Cas9 and sgRNAs are quite important for efficient genome editing by CRISPR/Cas9 in plants. Here, we report our results of targeted genome editing using the maize dmc1 gene promoter combined with the U3 promoter for Cas9 and sgRNA, respectively. Three loci in the maize genome were selected for targeting. The T0 plants regenerated were highly efficiently edited at the target sites with homozygous or bi‐allelic mutants accounting for about 66%. The mutations in T0 plants could be stably transmitted to the T1 generation, and new mutations could be generated in gametes or zygotes. Whole‐genome resequencing indicated that no off‐target mutations could be detected in the predicted loci with sequence similarity to the targeted site. Our results show that the dmc1 promoter‐controlled (DPC) CRISPR/Cas9 system is highly efficient in maize and provide further evidence that the optimization of the promoters used for the CRISPR/Cas9 system is important for enhancing the efficiency of targeted genome editing in plants. The evolutionary conservation of the dmc1 gene suggests its potential for use in other plant species.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12920</identifier><identifier>PMID: 29569825</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>biotechnology ; Corn ; CRISPR ; CRISPR-Cas systems ; CRISPR/Cas9 ; DMC1 gene ; dmc1 promoter ; Editing ; Evolution ; Evolutionary conservation ; Gametes ; genes ; Genomes ; Genomics ; homozygosity ; Loci ; maize ; Mutation ; Plant genetics ; Plant species ; Plants ; Promoters ; sequence homology ; Target detection ; targeted genome editing ; Zygotes</subject><ispartof>Plant biotechnology journal, 2018-11, Vol.16 (11), p.1848-1857</ispartof><rights>2018 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2018 John Wiley &amp; Sons, Inc.</rights><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5810-30db031123423e1f1f8f7ca96db79f3a41ebe375080e2deecb9f2fce3ef03ccb3</citedby><cites>FETCH-LOGICAL-c5810-30db031123423e1f1f8f7ca96db79f3a41ebe375080e2deecb9f2fce3ef03ccb3</cites><orcidid>0000-0001-8393-3575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12920$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12920$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11543,27903,27904,45553,45554,46030,46454</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29569825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Chao</creatorcontrib><creatorcontrib>Su, Handong</creatorcontrib><creatorcontrib>Bai, Han</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Liu, Yalin</creatorcontrib><creatorcontrib>Guo, Xianrui</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Yuan, Jing</creatorcontrib><creatorcontrib>Birchler, James A.</creatorcontrib><creatorcontrib>Han, Fangpu</creatorcontrib><title>High‐efficiency genome editing using a dmc1 promoter‐controlled CRISPR/Cas9 system in maize</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Previous studies revealed that the promoters for driving both Cas9 and sgRNAs are quite important for efficient genome editing by CRISPR/Cas9 in plants. Here, we report our results of targeted genome editing using the maize dmc1 gene promoter combined with the U3 promoter for Cas9 and sgRNA, respectively. Three loci in the maize genome were selected for targeting. The T0 plants regenerated were highly efficiently edited at the target sites with homozygous or bi‐allelic mutants accounting for about 66%. The mutations in T0 plants could be stably transmitted to the T1 generation, and new mutations could be generated in gametes or zygotes. Whole‐genome resequencing indicated that no off‐target mutations could be detected in the predicted loci with sequence similarity to the targeted site. Our results show that the dmc1 promoter‐controlled (DPC) CRISPR/Cas9 system is highly efficient in maize and provide further evidence that the optimization of the promoters used for the CRISPR/Cas9 system is important for enhancing the efficiency of targeted genome editing in plants. The evolutionary conservation of the dmc1 gene suggests its potential for use in other plant species.</description><subject>biotechnology</subject><subject>Corn</subject><subject>CRISPR</subject><subject>CRISPR-Cas systems</subject><subject>CRISPR/Cas9</subject><subject>DMC1 gene</subject><subject>dmc1 promoter</subject><subject>Editing</subject><subject>Evolution</subject><subject>Evolutionary conservation</subject><subject>Gametes</subject><subject>genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>homozygosity</subject><subject>Loci</subject><subject>maize</subject><subject>Mutation</subject><subject>Plant genetics</subject><subject>Plant species</subject><subject>Plants</subject><subject>Promoters</subject><subject>sequence homology</subject><subject>Target detection</subject><subject>targeted genome editing</subject><subject>Zygotes</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNqFksFu1DAQhiMEoqVw4AWQJS5w2F2PHSfxBamsCl2pElWBs-U449RVYi9xAtqeeASekSfBS8oKkBC2ZFv2N_-Mf02WPQW6hDRW29otgUlG72XHkBfloiwEu3845_lR9ijGG0oZFKJ4mB0xKQpZMXGcqXPXXn__-g2tdcahNzvSog89Emzc6HxLprhfNWl6A2Q7hD6MOKQIE_w4hK7DhqyvNu8vr1ZrHSWJuzhiT5wnvXa3-Dh7YHUX8cndfpJ9fHP2YX2-uHj3drM-vVgYUQFdcNrUlAMwnjOOYMFWtjRaFk1dSst1DlgjLwWtKLIG0dTSMmuQo6XcmJqfZK9m3e1U99gYTMXpTm0H1-thp4J26s8X765VGz6rAipgwJPAizuBIXyaMI6qd9Fg12mPYYqKCZZKA5nn_0cpVBSS7zKhz_9Cb8I0-OSEYgBlJcqC7nMvZ6rVHSrnbUglmjQb7F3yGa1L96cl5yznQlYp4OUcYIYQ44D28FGgat8SKrWE-tkSiX32uzMH8lcPJGA1A19Slt2_ldTl680s-QPR3MIU</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Feng, Chao</creator><creator>Su, Handong</creator><creator>Bai, Han</creator><creator>Wang, Rui</creator><creator>Liu, Yalin</creator><creator>Guo, Xianrui</creator><creator>Liu, Chang</creator><creator>Zhang, Jing</creator><creator>Yuan, Jing</creator><creator>Birchler, James A.</creator><creator>Han, Fangpu</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8393-3575</orcidid></search><sort><creationdate>201811</creationdate><title>High‐efficiency genome editing using a dmc1 promoter‐controlled CRISPR/Cas9 system in maize</title><author>Feng, Chao ; Su, Handong ; Bai, Han ; Wang, Rui ; Liu, Yalin ; Guo, Xianrui ; Liu, Chang ; Zhang, Jing ; Yuan, Jing ; Birchler, James A. ; Han, Fangpu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5810-30db031123423e1f1f8f7ca96db79f3a41ebe375080e2deecb9f2fce3ef03ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>biotechnology</topic><topic>Corn</topic><topic>CRISPR</topic><topic>CRISPR-Cas systems</topic><topic>CRISPR/Cas9</topic><topic>DMC1 gene</topic><topic>dmc1 promoter</topic><topic>Editing</topic><topic>Evolution</topic><topic>Evolutionary conservation</topic><topic>Gametes</topic><topic>genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>homozygosity</topic><topic>Loci</topic><topic>maize</topic><topic>Mutation</topic><topic>Plant genetics</topic><topic>Plant species</topic><topic>Plants</topic><topic>Promoters</topic><topic>sequence homology</topic><topic>Target detection</topic><topic>targeted genome editing</topic><topic>Zygotes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Chao</creatorcontrib><creatorcontrib>Su, Handong</creatorcontrib><creatorcontrib>Bai, Han</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Liu, Yalin</creatorcontrib><creatorcontrib>Guo, Xianrui</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Yuan, Jing</creatorcontrib><creatorcontrib>Birchler, James A.</creatorcontrib><creatorcontrib>Han, Fangpu</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Chao</au><au>Su, Handong</au><au>Bai, Han</au><au>Wang, Rui</au><au>Liu, Yalin</au><au>Guo, Xianrui</au><au>Liu, Chang</au><au>Zhang, Jing</au><au>Yuan, Jing</au><au>Birchler, James A.</au><au>Han, Fangpu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐efficiency genome editing using a dmc1 promoter‐controlled CRISPR/Cas9 system in maize</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2018-11</date><risdate>2018</risdate><volume>16</volume><issue>11</issue><spage>1848</spage><epage>1857</epage><pages>1848-1857</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary Previous studies revealed that the promoters for driving both Cas9 and sgRNAs are quite important for efficient genome editing by CRISPR/Cas9 in plants. Here, we report our results of targeted genome editing using the maize dmc1 gene promoter combined with the U3 promoter for Cas9 and sgRNA, respectively. Three loci in the maize genome were selected for targeting. The T0 plants regenerated were highly efficiently edited at the target sites with homozygous or bi‐allelic mutants accounting for about 66%. The mutations in T0 plants could be stably transmitted to the T1 generation, and new mutations could be generated in gametes or zygotes. Whole‐genome resequencing indicated that no off‐target mutations could be detected in the predicted loci with sequence similarity to the targeted site. Our results show that the dmc1 promoter‐controlled (DPC) CRISPR/Cas9 system is highly efficient in maize and provide further evidence that the optimization of the promoters used for the CRISPR/Cas9 system is important for enhancing the efficiency of targeted genome editing in plants. The evolutionary conservation of the dmc1 gene suggests its potential for use in other plant species.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29569825</pmid><doi>10.1111/pbi.12920</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8393-3575</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2018-11, Vol.16 (11), p.1848-1857
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6181213
source Wiley-Blackwell Open Access Collection; Wiley Online Library - AutoHoldings Journals; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects biotechnology
Corn
CRISPR
CRISPR-Cas systems
CRISPR/Cas9
DMC1 gene
dmc1 promoter
Editing
Evolution
Evolutionary conservation
Gametes
genes
Genomes
Genomics
homozygosity
Loci
maize
Mutation
Plant genetics
Plant species
Plants
Promoters
sequence homology
Target detection
targeted genome editing
Zygotes
title High‐efficiency genome editing using a dmc1 promoter‐controlled CRISPR/Cas9 system in maize
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90efficiency%20genome%20editing%20using%20a%20dmc1%20promoter%E2%80%90controlled%20CRISPR/Cas9%20system%20in%20maize&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Feng,%20Chao&rft.date=2018-11&rft.volume=16&rft.issue=11&rft.spage=1848&rft.epage=1857&rft.pages=1848-1857&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12920&rft_dat=%3Cgale_pubme%3EA733243598%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117857603&rft_id=info:pmid/29569825&rft_galeid=A733243598&rfr_iscdi=true