13C Pyruvate Transport Across the Blood-Brain Barrier in Preclinical Hyperpolarised MRI
Hyperpolarised MRI with Dynamic Nuclear Polarisation overcomes the fundamental thermodynamic limitations of conventional magnetic resonance, and is translating to human studies with several early-phase clinical trials in progress including early reports that demonstrate the utility of the technique...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-10, Vol.8 (1), p.1-15, Article 15082 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Scientific reports |
container_volume | 8 |
creator | Miller, Jack J. Grist, James T. Serres, Sébastien Larkin, James R. Lau, Angus Z. Ray, Kevin Fisher, Katherine R. Hansen, Esben Tougaard, Rasmus Stilling Nielsen, Per Mose Lindhardt, Jakob Laustsen, Christoffer Gallagher, Ferdia A. Tyler, Damian J. Sibson, Nicola |
description | Hyperpolarised MRI with Dynamic Nuclear Polarisation overcomes the fundamental thermodynamic limitations of conventional magnetic resonance, and is translating to human studies with several early-phase clinical trials in progress including early reports that demonstrate the utility of the technique to observe lactate production in human brain cancer patients. Owing to the fundamental coupling of metabolism and tissue function, metabolic neuroimaging with hyperpolarised [1-
13
C]pyruvate has the potential to be revolutionary in numerous neurological disorders (e.g. brain tumour, ischemic stroke, and multiple sclerosis). Through the use of [1-
13
C]pyruvate and ethyl-[1-
13
C]pyruvate in naïve brain, a rodent model of metastasis to the brain, or porcine brain subjected to mannitol osmotic shock, we show that pyruvate transport across the blood-brain barrier of anaesthetised animals is rate-limiting. We show through use of a well-characterised rat model of brain metastasis that the appearance of hyperpolarized [1-
13
C]lactate production corresponds to the point of blood-brain barrier breakdown in the disease. With the more lipophilic ethyl-[1-
13
C]pyruvate, we observe pyruvate production endogenously throughout the entire brain and lactate production only in the region of disease. In the
in vivo
porcine brain we show that mannitol shock permeabilises the blood-brain barrier sufficiently for a dramatic 90-fold increase in pyruvate transport and conversion to lactate in the brain, which is otherwise not resolvable. This suggests that earlier reports of whole-brain metabolism in anaesthetised animals may be confounded by partial volume effects and not informative enough for translational studies. Issues relating to pyruvate transport and partial volume effects must therefore be considered in pre-clinical studies investigating neuro-metabolism in anaesthetised animals, and we additionally note that these same techniques may provide a distinct biomarker of blood-brain barrier permeability in future studies. |
doi_str_mv | 10.1038/s41598-018-33363-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6180068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117825869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-4f08cbbef93ea9a7ddc43fff3af1a2af7fa8efaa22e78b44583f2554b5f8bee13</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2qqCDgC_RkqRcuaf0361yQ2BUtSKCiiqpHa5KMwSgbp-MEab99sywqhUN98ZP8e08zfox9lOKzFNp9yUbayhVCukJrXerCvmMHShhbKK3U-3_0PjvO-UHMx6rKyOoD29dCC1tae8B-Sb3iNxuaHmFEfkvQ5yHRyM8aSjnz8R75skupLZYEsedLIIpIfJY3hE0X-9hAxy82A9KQOqCYseXXPy6P2F6ALuPx833Ifn49v11dFFffv12uzq6KRjs5FiYI19Q1hkojVLBo28boEIKGIEFBWARwGACUwoWrjbFOB2WtqW1wNaLUh-x0lztM9RrbBvuRoPMDxTXQxieI_vVLH-_9XXr0pXRClG4OOHkOoPR7wjz6dcwNdh30mKbslZROS2nEFv30Bn1IE_Xzeltq4ZR1ZTVTakc9_SBh-DuMFH5bnd9V5-fq_FN13s4mvTPlGe7vkF6i_-P6A5zZm8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117825869</pqid></control><display><type>article</type><title>13C Pyruvate Transport Across the Blood-Brain Barrier in Preclinical Hyperpolarised MRI</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Miller, Jack J. ; Grist, James T. ; Serres, Sébastien ; Larkin, James R. ; Lau, Angus Z. ; Ray, Kevin ; Fisher, Katherine R. ; Hansen, Esben ; Tougaard, Rasmus Stilling ; Nielsen, Per Mose ; Lindhardt, Jakob ; Laustsen, Christoffer ; Gallagher, Ferdia A. ; Tyler, Damian J. ; Sibson, Nicola</creator><creatorcontrib>Miller, Jack J. ; Grist, James T. ; Serres, Sébastien ; Larkin, James R. ; Lau, Angus Z. ; Ray, Kevin ; Fisher, Katherine R. ; Hansen, Esben ; Tougaard, Rasmus Stilling ; Nielsen, Per Mose ; Lindhardt, Jakob ; Laustsen, Christoffer ; Gallagher, Ferdia A. ; Tyler, Damian J. ; Sibson, Nicola</creatorcontrib><description>Hyperpolarised MRI with Dynamic Nuclear Polarisation overcomes the fundamental thermodynamic limitations of conventional magnetic resonance, and is translating to human studies with several early-phase clinical trials in progress including early reports that demonstrate the utility of the technique to observe lactate production in human brain cancer patients. Owing to the fundamental coupling of metabolism and tissue function, metabolic neuroimaging with hyperpolarised [1-
13
C]pyruvate has the potential to be revolutionary in numerous neurological disorders (e.g. brain tumour, ischemic stroke, and multiple sclerosis). Through the use of [1-
13
C]pyruvate and ethyl-[1-
13
C]pyruvate in naïve brain, a rodent model of metastasis to the brain, or porcine brain subjected to mannitol osmotic shock, we show that pyruvate transport across the blood-brain barrier of anaesthetised animals is rate-limiting. We show through use of a well-characterised rat model of brain metastasis that the appearance of hyperpolarized [1-
13
C]lactate production corresponds to the point of blood-brain barrier breakdown in the disease. With the more lipophilic ethyl-[1-
13
C]pyruvate, we observe pyruvate production endogenously throughout the entire brain and lactate production only in the region of disease. In the
in vivo
porcine brain we show that mannitol shock permeabilises the blood-brain barrier sufficiently for a dramatic 90-fold increase in pyruvate transport and conversion to lactate in the brain, which is otherwise not resolvable. This suggests that earlier reports of whole-brain metabolism in anaesthetised animals may be confounded by partial volume effects and not informative enough for translational studies. Issues relating to pyruvate transport and partial volume effects must therefore be considered in pre-clinical studies investigating neuro-metabolism in anaesthetised animals, and we additionally note that these same techniques may provide a distinct biomarker of blood-brain barrier permeability in future studies.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-33363-5</identifier><identifier>PMID: 30305655</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 59 ; 59/57 ; 631/443/319/1642 ; 631/67/2321 ; 692/308/575 ; Animals ; Blood-brain barrier ; Brain tumors ; Cancer ; Clinical trials ; Humanities and Social Sciences ; Ischemia ; Lactic acid ; Lipophilic ; Magnetic resonance imaging ; Mannitol ; Membrane permeability ; Metabolism ; Metastases ; Metastasis ; multidisciplinary ; Multiple sclerosis ; Neuroimaging ; Neurological diseases ; Osmotic shock ; Pyruvic acid ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2018-10, Vol.8 (1), p.1-15, Article 15082</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-4f08cbbef93ea9a7ddc43fff3af1a2af7fa8efaa22e78b44583f2554b5f8bee13</citedby><cites>FETCH-LOGICAL-c381t-4f08cbbef93ea9a7ddc43fff3af1a2af7fa8efaa22e78b44583f2554b5f8bee13</cites><orcidid>0000-0002-4169-8447 ; 0000-0001-7223-4031 ; 0000-0002-6258-1299 ; 0000-0002-2716-561X ; 0000-0002-0317-2911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180068/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180068/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids></links><search><creatorcontrib>Miller, Jack J.</creatorcontrib><creatorcontrib>Grist, James T.</creatorcontrib><creatorcontrib>Serres, Sébastien</creatorcontrib><creatorcontrib>Larkin, James R.</creatorcontrib><creatorcontrib>Lau, Angus Z.</creatorcontrib><creatorcontrib>Ray, Kevin</creatorcontrib><creatorcontrib>Fisher, Katherine R.</creatorcontrib><creatorcontrib>Hansen, Esben</creatorcontrib><creatorcontrib>Tougaard, Rasmus Stilling</creatorcontrib><creatorcontrib>Nielsen, Per Mose</creatorcontrib><creatorcontrib>Lindhardt, Jakob</creatorcontrib><creatorcontrib>Laustsen, Christoffer</creatorcontrib><creatorcontrib>Gallagher, Ferdia A.</creatorcontrib><creatorcontrib>Tyler, Damian J.</creatorcontrib><creatorcontrib>Sibson, Nicola</creatorcontrib><title>13C Pyruvate Transport Across the Blood-Brain Barrier in Preclinical Hyperpolarised MRI</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Hyperpolarised MRI with Dynamic Nuclear Polarisation overcomes the fundamental thermodynamic limitations of conventional magnetic resonance, and is translating to human studies with several early-phase clinical trials in progress including early reports that demonstrate the utility of the technique to observe lactate production in human brain cancer patients. Owing to the fundamental coupling of metabolism and tissue function, metabolic neuroimaging with hyperpolarised [1-
13
C]pyruvate has the potential to be revolutionary in numerous neurological disorders (e.g. brain tumour, ischemic stroke, and multiple sclerosis). Through the use of [1-
13
C]pyruvate and ethyl-[1-
13
C]pyruvate in naïve brain, a rodent model of metastasis to the brain, or porcine brain subjected to mannitol osmotic shock, we show that pyruvate transport across the blood-brain barrier of anaesthetised animals is rate-limiting. We show through use of a well-characterised rat model of brain metastasis that the appearance of hyperpolarized [1-
13
C]lactate production corresponds to the point of blood-brain barrier breakdown in the disease. With the more lipophilic ethyl-[1-
13
C]pyruvate, we observe pyruvate production endogenously throughout the entire brain and lactate production only in the region of disease. In the
in vivo
porcine brain we show that mannitol shock permeabilises the blood-brain barrier sufficiently for a dramatic 90-fold increase in pyruvate transport and conversion to lactate in the brain, which is otherwise not resolvable. This suggests that earlier reports of whole-brain metabolism in anaesthetised animals may be confounded by partial volume effects and not informative enough for translational studies. Issues relating to pyruvate transport and partial volume effects must therefore be considered in pre-clinical studies investigating neuro-metabolism in anaesthetised animals, and we additionally note that these same techniques may provide a distinct biomarker of blood-brain barrier permeability in future studies.</description><subject>140/131</subject><subject>59</subject><subject>59/57</subject><subject>631/443/319/1642</subject><subject>631/67/2321</subject><subject>692/308/575</subject><subject>Animals</subject><subject>Blood-brain barrier</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Clinical trials</subject><subject>Humanities and Social Sciences</subject><subject>Ischemia</subject><subject>Lactic acid</subject><subject>Lipophilic</subject><subject>Magnetic resonance imaging</subject><subject>Mannitol</subject><subject>Membrane permeability</subject><subject>Metabolism</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>multidisciplinary</subject><subject>Multiple sclerosis</subject><subject>Neuroimaging</subject><subject>Neurological diseases</subject><subject>Osmotic shock</subject><subject>Pyruvic acid</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9P3DAQxa2qqCDgC_RkqRcuaf0361yQ2BUtSKCiiqpHa5KMwSgbp-MEab99sywqhUN98ZP8e08zfox9lOKzFNp9yUbayhVCukJrXerCvmMHShhbKK3U-3_0PjvO-UHMx6rKyOoD29dCC1tae8B-Sb3iNxuaHmFEfkvQ5yHRyM8aSjnz8R75skupLZYEsedLIIpIfJY3hE0X-9hAxy82A9KQOqCYseXXPy6P2F6ALuPx833Ifn49v11dFFffv12uzq6KRjs5FiYI19Q1hkojVLBo28boEIKGIEFBWARwGACUwoWrjbFOB2WtqW1wNaLUh-x0lztM9RrbBvuRoPMDxTXQxieI_vVLH-_9XXr0pXRClG4OOHkOoPR7wjz6dcwNdh30mKbslZROS2nEFv30Bn1IE_Xzeltq4ZR1ZTVTakc9_SBh-DuMFH5bnd9V5-fq_FN13s4mvTPlGe7vkF6i_-P6A5zZm8g</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Miller, Jack J.</creator><creator>Grist, James T.</creator><creator>Serres, Sébastien</creator><creator>Larkin, James R.</creator><creator>Lau, Angus Z.</creator><creator>Ray, Kevin</creator><creator>Fisher, Katherine R.</creator><creator>Hansen, Esben</creator><creator>Tougaard, Rasmus Stilling</creator><creator>Nielsen, Per Mose</creator><creator>Lindhardt, Jakob</creator><creator>Laustsen, Christoffer</creator><creator>Gallagher, Ferdia A.</creator><creator>Tyler, Damian J.</creator><creator>Sibson, Nicola</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4169-8447</orcidid><orcidid>https://orcid.org/0000-0001-7223-4031</orcidid><orcidid>https://orcid.org/0000-0002-6258-1299</orcidid><orcidid>https://orcid.org/0000-0002-2716-561X</orcidid><orcidid>https://orcid.org/0000-0002-0317-2911</orcidid></search><sort><creationdate>20181010</creationdate><title>13C Pyruvate Transport Across the Blood-Brain Barrier in Preclinical Hyperpolarised MRI</title><author>Miller, Jack J. ; Grist, James T. ; Serres, Sébastien ; Larkin, James R. ; Lau, Angus Z. ; Ray, Kevin ; Fisher, Katherine R. ; Hansen, Esben ; Tougaard, Rasmus Stilling ; Nielsen, Per Mose ; Lindhardt, Jakob ; Laustsen, Christoffer ; Gallagher, Ferdia A. ; Tyler, Damian J. ; Sibson, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-4f08cbbef93ea9a7ddc43fff3af1a2af7fa8efaa22e78b44583f2554b5f8bee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/131</topic><topic>59</topic><topic>59/57</topic><topic>631/443/319/1642</topic><topic>631/67/2321</topic><topic>692/308/575</topic><topic>Animals</topic><topic>Blood-brain barrier</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Clinical trials</topic><topic>Humanities and Social Sciences</topic><topic>Ischemia</topic><topic>Lactic acid</topic><topic>Lipophilic</topic><topic>Magnetic resonance imaging</topic><topic>Mannitol</topic><topic>Membrane permeability</topic><topic>Metabolism</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>multidisciplinary</topic><topic>Multiple sclerosis</topic><topic>Neuroimaging</topic><topic>Neurological diseases</topic><topic>Osmotic shock</topic><topic>Pyruvic acid</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Jack J.</creatorcontrib><creatorcontrib>Grist, James T.</creatorcontrib><creatorcontrib>Serres, Sébastien</creatorcontrib><creatorcontrib>Larkin, James R.</creatorcontrib><creatorcontrib>Lau, Angus Z.</creatorcontrib><creatorcontrib>Ray, Kevin</creatorcontrib><creatorcontrib>Fisher, Katherine R.</creatorcontrib><creatorcontrib>Hansen, Esben</creatorcontrib><creatorcontrib>Tougaard, Rasmus Stilling</creatorcontrib><creatorcontrib>Nielsen, Per Mose</creatorcontrib><creatorcontrib>Lindhardt, Jakob</creatorcontrib><creatorcontrib>Laustsen, Christoffer</creatorcontrib><creatorcontrib>Gallagher, Ferdia A.</creatorcontrib><creatorcontrib>Tyler, Damian J.</creatorcontrib><creatorcontrib>Sibson, Nicola</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Jack J.</au><au>Grist, James T.</au><au>Serres, Sébastien</au><au>Larkin, James R.</au><au>Lau, Angus Z.</au><au>Ray, Kevin</au><au>Fisher, Katherine R.</au><au>Hansen, Esben</au><au>Tougaard, Rasmus Stilling</au><au>Nielsen, Per Mose</au><au>Lindhardt, Jakob</au><au>Laustsen, Christoffer</au><au>Gallagher, Ferdia A.</au><au>Tyler, Damian J.</au><au>Sibson, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>13C Pyruvate Transport Across the Blood-Brain Barrier in Preclinical Hyperpolarised MRI</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2018-10-10</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>15082</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Hyperpolarised MRI with Dynamic Nuclear Polarisation overcomes the fundamental thermodynamic limitations of conventional magnetic resonance, and is translating to human studies with several early-phase clinical trials in progress including early reports that demonstrate the utility of the technique to observe lactate production in human brain cancer patients. Owing to the fundamental coupling of metabolism and tissue function, metabolic neuroimaging with hyperpolarised [1-
13
C]pyruvate has the potential to be revolutionary in numerous neurological disorders (e.g. brain tumour, ischemic stroke, and multiple sclerosis). Through the use of [1-
13
C]pyruvate and ethyl-[1-
13
C]pyruvate in naïve brain, a rodent model of metastasis to the brain, or porcine brain subjected to mannitol osmotic shock, we show that pyruvate transport across the blood-brain barrier of anaesthetised animals is rate-limiting. We show through use of a well-characterised rat model of brain metastasis that the appearance of hyperpolarized [1-
13
C]lactate production corresponds to the point of blood-brain barrier breakdown in the disease. With the more lipophilic ethyl-[1-
13
C]pyruvate, we observe pyruvate production endogenously throughout the entire brain and lactate production only in the region of disease. In the
in vivo
porcine brain we show that mannitol shock permeabilises the blood-brain barrier sufficiently for a dramatic 90-fold increase in pyruvate transport and conversion to lactate in the brain, which is otherwise not resolvable. This suggests that earlier reports of whole-brain metabolism in anaesthetised animals may be confounded by partial volume effects and not informative enough for translational studies. Issues relating to pyruvate transport and partial volume effects must therefore be considered in pre-clinical studies investigating neuro-metabolism in anaesthetised animals, and we additionally note that these same techniques may provide a distinct biomarker of blood-brain barrier permeability in future studies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30305655</pmid><doi>10.1038/s41598-018-33363-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4169-8447</orcidid><orcidid>https://orcid.org/0000-0001-7223-4031</orcidid><orcidid>https://orcid.org/0000-0002-6258-1299</orcidid><orcidid>https://orcid.org/0000-0002-2716-561X</orcidid><orcidid>https://orcid.org/0000-0002-0317-2911</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-10, Vol.8 (1), p.1-15, Article 15082 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6180068 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 140/131 59 59/57 631/443/319/1642 631/67/2321 692/308/575 Animals Blood-brain barrier Brain tumors Cancer Clinical trials Humanities and Social Sciences Ischemia Lactic acid Lipophilic Magnetic resonance imaging Mannitol Membrane permeability Metabolism Metastases Metastasis multidisciplinary Multiple sclerosis Neuroimaging Neurological diseases Osmotic shock Pyruvic acid Science Science (multidisciplinary) |
title | 13C Pyruvate Transport Across the Blood-Brain Barrier in Preclinical Hyperpolarised MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=13C%20Pyruvate%20Transport%20Across%20the%20Blood-Brain%20Barrier%20in%20Preclinical%20Hyperpolarised%20MRI&rft.jtitle=Scientific%20reports&rft.au=Miller,%20Jack%20J.&rft.date=2018-10-10&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=15082&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-33363-5&rft_dat=%3Cproquest_pubme%3E2117825869%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117825869&rft_id=info:pmid/30305655&rfr_iscdi=true |