Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons
The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal’s position (“place cells”) and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2018-07, Vol.99 (1), p.147-162.e8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 162.e8 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 99 |
creator | Hsu, Ching-Lung Zhao, Xinyu Milstein, Aaron D. Spruston, Nelson |
description | The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal’s position (“place cells”) and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential. The biophysical mechanisms underlying this nonlinear cellular computation are unknown. Here, through a combination of in vitro, in vivo, and in silico approaches, we show that persistent sodium current mediates the strong membrane potential dependence of place cell activity. This current operates at membrane potentials below the action potential threshold and over seconds-long timescales, mediating a powerful and rapidly reversible amplification of synaptic responses, which drives place cell firing. Thus, we identify a biophysical mechanism that shapes the coding properties of neurons composing the hippocampal cognitive map.
[Display omitted]
•Steep voltage dependence of responses in place cells is recapitulated in vitro•Subthreshold persistent sodium current (INa-p) mediates amplification of EPSPs•INa-p mediates subthreshold amplification of place-dependent responses in vivo•Synaptic amplification is explained by the biophysics of INa-pin silico
The hippocampus encodes experience using “place cells.” Hsu et al. show that their firing is rapidly and reversibly regulated by small changes in membrane potential through persistent sodium current, providing a biophysical mechanism by which behavior can influence place cell firing. |
doi_str_mv | 10.1016/j.neuron.2018.05.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6179354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627318304239</els_id><sourcerecordid>2056758639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-37e0100d5b3c4a1b2001d38ebe007f4199bf0304e9f030a34867df714de51ef43</originalsourceid><addsrcrecordid>eNp9UUtv1DAYtBCILoV_gJAlLlwS7DiO4wsSWh6tVKDSAlfLib9svUrsYDuV-u9xuqU8Dpw-P2bGMx6EnlNSUkKb14fSwRK8KytC25LwklT8AdpQIkVRUykfog1pZVM0lWAn6EmMB0JozSV9jE4qKYmUkm9QuIQQbUzgEt55Y5cJb5cQ1u0nMFYniDhdAd4lgBl_92PSe8DvYAZnwPWA_YB3s05Wj3ib-W6PrcNndp59r6c5n17eBD1Zk1efb_3Gp-jRoMcIz-7mKfr24f3X7Vlx8eXj-fbtRdHXkqaCCSCUEMM71teadlW2b1gLHRAihjVhNxBGapDr0KxuG2EGQWsDnMJQs1P05qg7L90Eps-Zgh7VHOykw43y2qq_b5y9Unt_rRoqJOOrwKs7geB_LBCTmmzsYRy1A79EVRHeCN42TGboy3-gB78El-NlVCNFKxirMqo-ovrgYwww3JuhRK2lqoM6lqrWUhXhKpeaaS_-DHJP-tXi76SQv_PaQlCxt2s7xgbokzLe_v-Fn0awtq8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069787332</pqid></control><display><type>article</type><title>Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hsu, Ching-Lung ; Zhao, Xinyu ; Milstein, Aaron D. ; Spruston, Nelson</creator><creatorcontrib>Hsu, Ching-Lung ; Zhao, Xinyu ; Milstein, Aaron D. ; Spruston, Nelson</creatorcontrib><description>The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal’s position (“place cells”) and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential. The biophysical mechanisms underlying this nonlinear cellular computation are unknown. Here, through a combination of in vitro, in vivo, and in silico approaches, we show that persistent sodium current mediates the strong membrane potential dependence of place cell activity. This current operates at membrane potentials below the action potential threshold and over seconds-long timescales, mediating a powerful and rapidly reversible amplification of synaptic responses, which drives place cell firing. Thus, we identify a biophysical mechanism that shapes the coding properties of neurons composing the hippocampal cognitive map.
[Display omitted]
•Steep voltage dependence of responses in place cells is recapitulated in vitro•Subthreshold persistent sodium current (INa-p) mediates amplification of EPSPs•INa-p mediates subthreshold amplification of place-dependent responses in vivo•Synaptic amplification is explained by the biophysics of INa-pin silico
The hippocampus encodes experience using “place cells.” Hsu et al. show that their firing is rapidly and reversibly regulated by small changes in membrane potential through persistent sodium current, providing a biophysical mechanism by which behavior can influence place cell firing.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2018.05.025</identifier><identifier>PMID: 29909995</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action potential ; Action Potentials ; Animals ; Biophysics ; Cognitive ability ; cognitive map ; Computer Simulation ; Entorhinal Cortex - physiology ; Excitatory Postsynaptic Potentials - physiology ; Hippocampus ; Hippocampus - metabolism ; Hippocampus - physiology ; In Vitro Techniques ; Membrane potential ; Membrane Potentials - physiology ; Mice ; Neural coding ; Neurons ; Patch-Clamp Techniques ; persistent sodium current ; place cell ; Pyramidal cells ; Pyramidal Cells - metabolism ; Pyramidal Cells - physiology ; Rats ; Rats, Wistar ; Sodium ; Sodium - metabolism ; Sodium channels (voltage-gated) ; Software ; Spatial Memory - physiology ; synaptic integration ; voltage-gated channels</subject><ispartof>Neuron (Cambridge, Mass.), 2018-07, Vol.99 (1), p.147-162.e8</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>2018. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-37e0100d5b3c4a1b2001d38ebe007f4199bf0304e9f030a34867df714de51ef43</citedby><cites>FETCH-LOGICAL-c491t-37e0100d5b3c4a1b2001d38ebe007f4199bf0304e9f030a34867df714de51ef43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2018.05.025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29909995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Ching-Lung</creatorcontrib><creatorcontrib>Zhao, Xinyu</creatorcontrib><creatorcontrib>Milstein, Aaron D.</creatorcontrib><creatorcontrib>Spruston, Nelson</creatorcontrib><title>Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal’s position (“place cells”) and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential. The biophysical mechanisms underlying this nonlinear cellular computation are unknown. Here, through a combination of in vitro, in vivo, and in silico approaches, we show that persistent sodium current mediates the strong membrane potential dependence of place cell activity. This current operates at membrane potentials below the action potential threshold and over seconds-long timescales, mediating a powerful and rapidly reversible amplification of synaptic responses, which drives place cell firing. Thus, we identify a biophysical mechanism that shapes the coding properties of neurons composing the hippocampal cognitive map.
[Display omitted]
•Steep voltage dependence of responses in place cells is recapitulated in vitro•Subthreshold persistent sodium current (INa-p) mediates amplification of EPSPs•INa-p mediates subthreshold amplification of place-dependent responses in vivo•Synaptic amplification is explained by the biophysics of INa-pin silico
The hippocampus encodes experience using “place cells.” Hsu et al. show that their firing is rapidly and reversibly regulated by small changes in membrane potential through persistent sodium current, providing a biophysical mechanism by which behavior can influence place cell firing.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Animals</subject><subject>Biophysics</subject><subject>Cognitive ability</subject><subject>cognitive map</subject><subject>Computer Simulation</subject><subject>Entorhinal Cortex - physiology</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - physiology</subject><subject>In Vitro Techniques</subject><subject>Membrane potential</subject><subject>Membrane Potentials - physiology</subject><subject>Mice</subject><subject>Neural coding</subject><subject>Neurons</subject><subject>Patch-Clamp Techniques</subject><subject>persistent sodium current</subject><subject>place cell</subject><subject>Pyramidal cells</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Sodium</subject><subject>Sodium - metabolism</subject><subject>Sodium channels (voltage-gated)</subject><subject>Software</subject><subject>Spatial Memory - physiology</subject><subject>synaptic integration</subject><subject>voltage-gated channels</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UUtv1DAYtBCILoV_gJAlLlwS7DiO4wsSWh6tVKDSAlfLib9svUrsYDuV-u9xuqU8Dpw-P2bGMx6EnlNSUkKb14fSwRK8KytC25LwklT8AdpQIkVRUykfog1pZVM0lWAn6EmMB0JozSV9jE4qKYmUkm9QuIQQbUzgEt55Y5cJb5cQ1u0nMFYniDhdAd4lgBl_92PSe8DvYAZnwPWA_YB3s05Wj3ib-W6PrcNndp59r6c5n17eBD1Zk1efb_3Gp-jRoMcIz-7mKfr24f3X7Vlx8eXj-fbtRdHXkqaCCSCUEMM71teadlW2b1gLHRAihjVhNxBGapDr0KxuG2EGQWsDnMJQs1P05qg7L90Eps-Zgh7VHOykw43y2qq_b5y9Unt_rRoqJOOrwKs7geB_LBCTmmzsYRy1A79EVRHeCN42TGboy3-gB78El-NlVCNFKxirMqo-ovrgYwww3JuhRK2lqoM6lqrWUhXhKpeaaS_-DHJP-tXi76SQv_PaQlCxt2s7xgbokzLe_v-Fn0awtq8</recordid><startdate>20180711</startdate><enddate>20180711</enddate><creator>Hsu, Ching-Lung</creator><creator>Zhao, Xinyu</creator><creator>Milstein, Aaron D.</creator><creator>Spruston, Nelson</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180711</creationdate><title>Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons</title><author>Hsu, Ching-Lung ; Zhao, Xinyu ; Milstein, Aaron D. ; Spruston, Nelson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-37e0100d5b3c4a1b2001d38ebe007f4199bf0304e9f030a34867df714de51ef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Animals</topic><topic>Biophysics</topic><topic>Cognitive ability</topic><topic>cognitive map</topic><topic>Computer Simulation</topic><topic>Entorhinal Cortex - physiology</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - physiology</topic><topic>In Vitro Techniques</topic><topic>Membrane potential</topic><topic>Membrane Potentials - physiology</topic><topic>Mice</topic><topic>Neural coding</topic><topic>Neurons</topic><topic>Patch-Clamp Techniques</topic><topic>persistent sodium current</topic><topic>place cell</topic><topic>Pyramidal cells</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Sodium</topic><topic>Sodium - metabolism</topic><topic>Sodium channels (voltage-gated)</topic><topic>Software</topic><topic>Spatial Memory - physiology</topic><topic>synaptic integration</topic><topic>voltage-gated channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Ching-Lung</creatorcontrib><creatorcontrib>Zhao, Xinyu</creatorcontrib><creatorcontrib>Milstein, Aaron D.</creatorcontrib><creatorcontrib>Spruston, Nelson</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Ching-Lung</au><au>Zhao, Xinyu</au><au>Milstein, Aaron D.</au><au>Spruston, Nelson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-07-11</date><risdate>2018</risdate><volume>99</volume><issue>1</issue><spage>147</spage><epage>162.e8</epage><pages>147-162.e8</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal’s position (“place cells”) and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential. The biophysical mechanisms underlying this nonlinear cellular computation are unknown. Here, through a combination of in vitro, in vivo, and in silico approaches, we show that persistent sodium current mediates the strong membrane potential dependence of place cell activity. This current operates at membrane potentials below the action potential threshold and over seconds-long timescales, mediating a powerful and rapidly reversible amplification of synaptic responses, which drives place cell firing. Thus, we identify a biophysical mechanism that shapes the coding properties of neurons composing the hippocampal cognitive map.
[Display omitted]
•Steep voltage dependence of responses in place cells is recapitulated in vitro•Subthreshold persistent sodium current (INa-p) mediates amplification of EPSPs•INa-p mediates subthreshold amplification of place-dependent responses in vivo•Synaptic amplification is explained by the biophysics of INa-pin silico
The hippocampus encodes experience using “place cells.” Hsu et al. show that their firing is rapidly and reversibly regulated by small changes in membrane potential through persistent sodium current, providing a biophysical mechanism by which behavior can influence place cell firing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29909995</pmid><doi>10.1016/j.neuron.2018.05.025</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2018-07, Vol.99 (1), p.147-162.e8 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6179354 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Action potential Action Potentials Animals Biophysics Cognitive ability cognitive map Computer Simulation Entorhinal Cortex - physiology Excitatory Postsynaptic Potentials - physiology Hippocampus Hippocampus - metabolism Hippocampus - physiology In Vitro Techniques Membrane potential Membrane Potentials - physiology Mice Neural coding Neurons Patch-Clamp Techniques persistent sodium current place cell Pyramidal cells Pyramidal Cells - metabolism Pyramidal Cells - physiology Rats Rats, Wistar Sodium Sodium - metabolism Sodium channels (voltage-gated) Software Spatial Memory - physiology synaptic integration voltage-gated channels |
title | Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20Sodium%20Current%20Mediates%20the%20Steep%20Voltage%20Dependence%20of%20Spatial%20Coding%20in%20Hippocampal%20Pyramidal%20Neurons&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Hsu,%20Ching-Lung&rft.date=2018-07-11&rft.volume=99&rft.issue=1&rft.spage=147&rft.epage=162.e8&rft.pages=147-162.e8&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2018.05.025&rft_dat=%3Cproquest_pubme%3E2056758639%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069787332&rft_id=info:pmid/29909995&rft_els_id=S0896627318304239&rfr_iscdi=true |