Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons

The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal’s position (“place cells”) and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2018-07, Vol.99 (1), p.147-162.e8
Hauptverfasser: Hsu, Ching-Lung, Zhao, Xinyu, Milstein, Aaron D., Spruston, Nelson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162.e8
container_issue 1
container_start_page 147
container_title Neuron (Cambridge, Mass.)
container_volume 99
creator Hsu, Ching-Lung
Zhao, Xinyu
Milstein, Aaron D.
Spruston, Nelson
description The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal’s position (“place cells”) and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential. The biophysical mechanisms underlying this nonlinear cellular computation are unknown. Here, through a combination of in vitro, in vivo, and in silico approaches, we show that persistent sodium current mediates the strong membrane potential dependence of place cell activity. This current operates at membrane potentials below the action potential threshold and over seconds-long timescales, mediating a powerful and rapidly reversible amplification of synaptic responses, which drives place cell firing. Thus, we identify a biophysical mechanism that shapes the coding properties of neurons composing the hippocampal cognitive map. [Display omitted] •Steep voltage dependence of responses in place cells is recapitulated in vitro•Subthreshold persistent sodium current (INa-p) mediates amplification of EPSPs•INa-p mediates subthreshold amplification of place-dependent responses in vivo•Synaptic amplification is explained by the biophysics of INa-pin silico The hippocampus encodes experience using “place cells.” Hsu et al. show that their firing is rapidly and reversibly regulated by small changes in membrane potential through persistent sodium current, providing a biophysical mechanism by which behavior can influence place cell firing.
doi_str_mv 10.1016/j.neuron.2018.05.025
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6179354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627318304239</els_id><sourcerecordid>2056758639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-37e0100d5b3c4a1b2001d38ebe007f4199bf0304e9f030a34867df714de51ef43</originalsourceid><addsrcrecordid>eNp9UUtv1DAYtBCILoV_gJAlLlwS7DiO4wsSWh6tVKDSAlfLib9svUrsYDuV-u9xuqU8Dpw-P2bGMx6EnlNSUkKb14fSwRK8KytC25LwklT8AdpQIkVRUykfog1pZVM0lWAn6EmMB0JozSV9jE4qKYmUkm9QuIQQbUzgEt55Y5cJb5cQ1u0nMFYniDhdAd4lgBl_92PSe8DvYAZnwPWA_YB3s05Wj3ib-W6PrcNndp59r6c5n17eBD1Zk1efb_3Gp-jRoMcIz-7mKfr24f3X7Vlx8eXj-fbtRdHXkqaCCSCUEMM71teadlW2b1gLHRAihjVhNxBGapDr0KxuG2EGQWsDnMJQs1P05qg7L90Eps-Zgh7VHOykw43y2qq_b5y9Unt_rRoqJOOrwKs7geB_LBCTmmzsYRy1A79EVRHeCN42TGboy3-gB78El-NlVCNFKxirMqo-ovrgYwww3JuhRK2lqoM6lqrWUhXhKpeaaS_-DHJP-tXi76SQv_PaQlCxt2s7xgbokzLe_v-Fn0awtq8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069787332</pqid></control><display><type>article</type><title>Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hsu, Ching-Lung ; Zhao, Xinyu ; Milstein, Aaron D. ; Spruston, Nelson</creator><creatorcontrib>Hsu, Ching-Lung ; Zhao, Xinyu ; Milstein, Aaron D. ; Spruston, Nelson</creatorcontrib><description>The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal’s position (“place cells”) and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential. The biophysical mechanisms underlying this nonlinear cellular computation are unknown. Here, through a combination of in vitro, in vivo, and in silico approaches, we show that persistent sodium current mediates the strong membrane potential dependence of place cell activity. This current operates at membrane potentials below the action potential threshold and over seconds-long timescales, mediating a powerful and rapidly reversible amplification of synaptic responses, which drives place cell firing. Thus, we identify a biophysical mechanism that shapes the coding properties of neurons composing the hippocampal cognitive map. [Display omitted] •Steep voltage dependence of responses in place cells is recapitulated in vitro•Subthreshold persistent sodium current (INa-p) mediates amplification of EPSPs•INa-p mediates subthreshold amplification of place-dependent responses in vivo•Synaptic amplification is explained by the biophysics of INa-pin silico The hippocampus encodes experience using “place cells.” Hsu et al. show that their firing is rapidly and reversibly regulated by small changes in membrane potential through persistent sodium current, providing a biophysical mechanism by which behavior can influence place cell firing.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2018.05.025</identifier><identifier>PMID: 29909995</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action potential ; Action Potentials ; Animals ; Biophysics ; Cognitive ability ; cognitive map ; Computer Simulation ; Entorhinal Cortex - physiology ; Excitatory Postsynaptic Potentials - physiology ; Hippocampus ; Hippocampus - metabolism ; Hippocampus - physiology ; In Vitro Techniques ; Membrane potential ; Membrane Potentials - physiology ; Mice ; Neural coding ; Neurons ; Patch-Clamp Techniques ; persistent sodium current ; place cell ; Pyramidal cells ; Pyramidal Cells - metabolism ; Pyramidal Cells - physiology ; Rats ; Rats, Wistar ; Sodium ; Sodium - metabolism ; Sodium channels (voltage-gated) ; Software ; Spatial Memory - physiology ; synaptic integration ; voltage-gated channels</subject><ispartof>Neuron (Cambridge, Mass.), 2018-07, Vol.99 (1), p.147-162.e8</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>2018. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-37e0100d5b3c4a1b2001d38ebe007f4199bf0304e9f030a34867df714de51ef43</citedby><cites>FETCH-LOGICAL-c491t-37e0100d5b3c4a1b2001d38ebe007f4199bf0304e9f030a34867df714de51ef43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2018.05.025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29909995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Ching-Lung</creatorcontrib><creatorcontrib>Zhao, Xinyu</creatorcontrib><creatorcontrib>Milstein, Aaron D.</creatorcontrib><creatorcontrib>Spruston, Nelson</creatorcontrib><title>Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal’s position (“place cells”) and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential. The biophysical mechanisms underlying this nonlinear cellular computation are unknown. Here, through a combination of in vitro, in vivo, and in silico approaches, we show that persistent sodium current mediates the strong membrane potential dependence of place cell activity. This current operates at membrane potentials below the action potential threshold and over seconds-long timescales, mediating a powerful and rapidly reversible amplification of synaptic responses, which drives place cell firing. Thus, we identify a biophysical mechanism that shapes the coding properties of neurons composing the hippocampal cognitive map. [Display omitted] •Steep voltage dependence of responses in place cells is recapitulated in vitro•Subthreshold persistent sodium current (INa-p) mediates amplification of EPSPs•INa-p mediates subthreshold amplification of place-dependent responses in vivo•Synaptic amplification is explained by the biophysics of INa-pin silico The hippocampus encodes experience using “place cells.” Hsu et al. show that their firing is rapidly and reversibly regulated by small changes in membrane potential through persistent sodium current, providing a biophysical mechanism by which behavior can influence place cell firing.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Animals</subject><subject>Biophysics</subject><subject>Cognitive ability</subject><subject>cognitive map</subject><subject>Computer Simulation</subject><subject>Entorhinal Cortex - physiology</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - physiology</subject><subject>In Vitro Techniques</subject><subject>Membrane potential</subject><subject>Membrane Potentials - physiology</subject><subject>Mice</subject><subject>Neural coding</subject><subject>Neurons</subject><subject>Patch-Clamp Techniques</subject><subject>persistent sodium current</subject><subject>place cell</subject><subject>Pyramidal cells</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Sodium</subject><subject>Sodium - metabolism</subject><subject>Sodium channels (voltage-gated)</subject><subject>Software</subject><subject>Spatial Memory - physiology</subject><subject>synaptic integration</subject><subject>voltage-gated channels</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UUtv1DAYtBCILoV_gJAlLlwS7DiO4wsSWh6tVKDSAlfLib9svUrsYDuV-u9xuqU8Dpw-P2bGMx6EnlNSUkKb14fSwRK8KytC25LwklT8AdpQIkVRUykfog1pZVM0lWAn6EmMB0JozSV9jE4qKYmUkm9QuIQQbUzgEt55Y5cJb5cQ1u0nMFYniDhdAd4lgBl_92PSe8DvYAZnwPWA_YB3s05Wj3ib-W6PrcNndp59r6c5n17eBD1Zk1efb_3Gp-jRoMcIz-7mKfr24f3X7Vlx8eXj-fbtRdHXkqaCCSCUEMM71teadlW2b1gLHRAihjVhNxBGapDr0KxuG2EGQWsDnMJQs1P05qg7L90Eps-Zgh7VHOykw43y2qq_b5y9Unt_rRoqJOOrwKs7geB_LBCTmmzsYRy1A79EVRHeCN42TGboy3-gB78El-NlVCNFKxirMqo-ovrgYwww3JuhRK2lqoM6lqrWUhXhKpeaaS_-DHJP-tXi76SQv_PaQlCxt2s7xgbokzLe_v-Fn0awtq8</recordid><startdate>20180711</startdate><enddate>20180711</enddate><creator>Hsu, Ching-Lung</creator><creator>Zhao, Xinyu</creator><creator>Milstein, Aaron D.</creator><creator>Spruston, Nelson</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180711</creationdate><title>Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons</title><author>Hsu, Ching-Lung ; Zhao, Xinyu ; Milstein, Aaron D. ; Spruston, Nelson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-37e0100d5b3c4a1b2001d38ebe007f4199bf0304e9f030a34867df714de51ef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Animals</topic><topic>Biophysics</topic><topic>Cognitive ability</topic><topic>cognitive map</topic><topic>Computer Simulation</topic><topic>Entorhinal Cortex - physiology</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - physiology</topic><topic>In Vitro Techniques</topic><topic>Membrane potential</topic><topic>Membrane Potentials - physiology</topic><topic>Mice</topic><topic>Neural coding</topic><topic>Neurons</topic><topic>Patch-Clamp Techniques</topic><topic>persistent sodium current</topic><topic>place cell</topic><topic>Pyramidal cells</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Sodium</topic><topic>Sodium - metabolism</topic><topic>Sodium channels (voltage-gated)</topic><topic>Software</topic><topic>Spatial Memory - physiology</topic><topic>synaptic integration</topic><topic>voltage-gated channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Ching-Lung</creatorcontrib><creatorcontrib>Zhao, Xinyu</creatorcontrib><creatorcontrib>Milstein, Aaron D.</creatorcontrib><creatorcontrib>Spruston, Nelson</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Ching-Lung</au><au>Zhao, Xinyu</au><au>Milstein, Aaron D.</au><au>Spruston, Nelson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-07-11</date><risdate>2018</risdate><volume>99</volume><issue>1</issue><spage>147</spage><epage>162.e8</epage><pages>147-162.e8</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal’s position (“place cells”) and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential. The biophysical mechanisms underlying this nonlinear cellular computation are unknown. Here, through a combination of in vitro, in vivo, and in silico approaches, we show that persistent sodium current mediates the strong membrane potential dependence of place cell activity. This current operates at membrane potentials below the action potential threshold and over seconds-long timescales, mediating a powerful and rapidly reversible amplification of synaptic responses, which drives place cell firing. Thus, we identify a biophysical mechanism that shapes the coding properties of neurons composing the hippocampal cognitive map. [Display omitted] •Steep voltage dependence of responses in place cells is recapitulated in vitro•Subthreshold persistent sodium current (INa-p) mediates amplification of EPSPs•INa-p mediates subthreshold amplification of place-dependent responses in vivo•Synaptic amplification is explained by the biophysics of INa-pin silico The hippocampus encodes experience using “place cells.” Hsu et al. show that their firing is rapidly and reversibly regulated by small changes in membrane potential through persistent sodium current, providing a biophysical mechanism by which behavior can influence place cell firing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29909995</pmid><doi>10.1016/j.neuron.2018.05.025</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2018-07, Vol.99 (1), p.147-162.e8
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6179354
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Action potential
Action Potentials
Animals
Biophysics
Cognitive ability
cognitive map
Computer Simulation
Entorhinal Cortex - physiology
Excitatory Postsynaptic Potentials - physiology
Hippocampus
Hippocampus - metabolism
Hippocampus - physiology
In Vitro Techniques
Membrane potential
Membrane Potentials - physiology
Mice
Neural coding
Neurons
Patch-Clamp Techniques
persistent sodium current
place cell
Pyramidal cells
Pyramidal Cells - metabolism
Pyramidal Cells - physiology
Rats
Rats, Wistar
Sodium
Sodium - metabolism
Sodium channels (voltage-gated)
Software
Spatial Memory - physiology
synaptic integration
voltage-gated channels
title Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20Sodium%20Current%20Mediates%20the%20Steep%20Voltage%20Dependence%20of%20Spatial%20Coding%20in%20Hippocampal%20Pyramidal%20Neurons&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Hsu,%20Ching-Lung&rft.date=2018-07-11&rft.volume=99&rft.issue=1&rft.spage=147&rft.epage=162.e8&rft.pages=147-162.e8&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2018.05.025&rft_dat=%3Cproquest_pubme%3E2056758639%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069787332&rft_id=info:pmid/29909995&rft_els_id=S0896627318304239&rfr_iscdi=true