Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention

Coronary artery disease (CAD) has substantial heritability and a polygenic architecture. However, the potential of genomic risk scores to help predict CAD outcomes has not been evaluated comprehensively, because available studies have involved limited genomic scope and limited sample sizes. This stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American College of Cardiology 2018-10, Vol.72 (16), p.1883-1893
Hauptverfasser: Inouye, Michael, Abraham, Gad, Nelson, Christopher P, Wood, Angela M, Sweeting, Michael J, Dudbridge, Frank, Lai, Florence Y, Kaptoge, Stephen, Brozynska, Marta, Wang, Tingting, Ye, Shu, Webb, Thomas R, Rutter, Martin K, Tzoulaki, Ioanna, Patel, Riyaz S, Loos, Ruth J F, Keavney, Bernard, Hemingway, Harry, Thompson, John, Watkins, Hugh, Deloukas, Panos, Di Angelantonio, Emanuele, Butterworth, Adam S, Danesh, John, Samani, Nilesh J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1893
container_issue 16
container_start_page 1883
container_title Journal of the American College of Cardiology
container_volume 72
creator Inouye, Michael
Abraham, Gad
Nelson, Christopher P
Wood, Angela M
Sweeting, Michael J
Dudbridge, Frank
Lai, Florence Y
Kaptoge, Stephen
Brozynska, Marta
Wang, Tingting
Ye, Shu
Webb, Thomas R
Rutter, Martin K
Tzoulaki, Ioanna
Patel, Riyaz S
Loos, Ruth J F
Keavney, Bernard
Hemingway, Harry
Thompson, John
Watkins, Hugh
Deloukas, Panos
Di Angelantonio, Emanuele
Butterworth, Adam S
Danesh, John
Samani, Nilesh J
description Coronary artery disease (CAD) has substantial heritability and a polygenic architecture. However, the potential of genomic risk scores to help predict CAD outcomes has not been evaluated comprehensively, because available studies have involved limited genomic scope and limited sample sizes. This study sought to construct a genomic risk score for CAD and to estimate its potential as a screening tool for primary prevention. Using a meta-analytic approach to combine large-scale, genome-wide, and targeted genetic association data, we developed a new genomic risk score for CAD (metaGRS) consisting of 1.7 million genetic variants. We externally tested metaGRS, both by itself and in combination with available data on conventional risk factors, in 22,242 CAD cases and 460,387 noncases from the UK Biobank. The hazard ratio (HR) for CAD was 1.71 (95% confidence interval [CI]: 1.68 to 1.73) per SD increase in metaGRS, an association larger than any other externally tested genetic risk score previously published. The metaGRS stratified individuals into significantly different life course trajectories of CAD risk, with those in the top 20% of metaGRS distribution having an HR of 4.17 (95% CI: 3.97 to 4.38) compared with those in the bottom 20%. The corresponding HR was 2.83 (95% CI: 2.61 to 3.07) among individuals on lipid-lowering or antihypertensive medications. The metaGRS had a higher C-index (C = 0.623; 95% CI: 0.615 to 0.631) for incident CAD than any of 6 conventional factors (smoking, diabetes, hypertension, body mass index, self-reported high cholesterol, and family history). For men in the top 20% of metaGRS with >2 conventional factors, 10% cumulative risk of CAD was reached by 48 years of age. The genomic score developed and evaluated here substantially advances the concept of using genomic information to stratify individuals with different trajectories of CAD risk and highlights the potential for genomic screening in early life to complement conventional risk prediction.
doi_str_mv 10.1016/j.jacc.2018.07.079
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6176870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117124277</sourcerecordid><originalsourceid>FETCH-LOGICAL-p294t-4ebc6323b9f6159084c1b907a05c0effa4e8faf2ef4b3e6ba8793680043166423</originalsourceid><addsrcrecordid>eNpdkdtKxDAQhoMouh5ewAsJeOOFXSdNmoMXwrIeQVBEr0uaTTRr26xNu-Dbm8UDKgQGMt9884cgtE9gTIDwk_l4ro0Z50DkGEQ6ag2NSFHIjBZKrKMRCFpkBJTYQtsxzgGAS6I20RYFCopxNkL-yrah8QY_-PiK7zs786b3ocXB4WnoQqu7dzzpepvKuY9WR4t9i5mE46TDk9lQ9_EU3zSL2hu9mozYhS6ZfLMaTcalbVf3u2jD6Trava-6g54uLx6n19nt3dXNdHKbLXLF-ozZynCa00o5TgoFkhlSKRAaCgPWOc2sdNrl1rGKWl5pKRTlEoBRwjnL6Q46-_QuhqqxM5O2d7ouF5-ByqB9-bfT-pfyOSxLTgSXApLg6EvQhbfBxr5sfDS2rnVrwxDLnBCl8rSJJfTwHzoPQ9em560oQRIlRKIOfif6ifL9C_QDRZ2KVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117124277</pqid></control><display><type>article</type><title>Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Inouye, Michael ; Abraham, Gad ; Nelson, Christopher P ; Wood, Angela M ; Sweeting, Michael J ; Dudbridge, Frank ; Lai, Florence Y ; Kaptoge, Stephen ; Brozynska, Marta ; Wang, Tingting ; Ye, Shu ; Webb, Thomas R ; Rutter, Martin K ; Tzoulaki, Ioanna ; Patel, Riyaz S ; Loos, Ruth J F ; Keavney, Bernard ; Hemingway, Harry ; Thompson, John ; Watkins, Hugh ; Deloukas, Panos ; Di Angelantonio, Emanuele ; Butterworth, Adam S ; Danesh, John ; Samani, Nilesh J</creator><creatorcontrib>Inouye, Michael ; Abraham, Gad ; Nelson, Christopher P ; Wood, Angela M ; Sweeting, Michael J ; Dudbridge, Frank ; Lai, Florence Y ; Kaptoge, Stephen ; Brozynska, Marta ; Wang, Tingting ; Ye, Shu ; Webb, Thomas R ; Rutter, Martin K ; Tzoulaki, Ioanna ; Patel, Riyaz S ; Loos, Ruth J F ; Keavney, Bernard ; Hemingway, Harry ; Thompson, John ; Watkins, Hugh ; Deloukas, Panos ; Di Angelantonio, Emanuele ; Butterworth, Adam S ; Danesh, John ; Samani, Nilesh J ; UK Biobank CardioMetabolic Consortium CHD Working Group</creatorcontrib><description>Coronary artery disease (CAD) has substantial heritability and a polygenic architecture. However, the potential of genomic risk scores to help predict CAD outcomes has not been evaluated comprehensively, because available studies have involved limited genomic scope and limited sample sizes. This study sought to construct a genomic risk score for CAD and to estimate its potential as a screening tool for primary prevention. Using a meta-analytic approach to combine large-scale, genome-wide, and targeted genetic association data, we developed a new genomic risk score for CAD (metaGRS) consisting of 1.7 million genetic variants. We externally tested metaGRS, both by itself and in combination with available data on conventional risk factors, in 22,242 CAD cases and 460,387 noncases from the UK Biobank. The hazard ratio (HR) for CAD was 1.71 (95% confidence interval [CI]: 1.68 to 1.73) per SD increase in metaGRS, an association larger than any other externally tested genetic risk score previously published. The metaGRS stratified individuals into significantly different life course trajectories of CAD risk, with those in the top 20% of metaGRS distribution having an HR of 4.17 (95% CI: 3.97 to 4.38) compared with those in the bottom 20%. The corresponding HR was 2.83 (95% CI: 2.61 to 3.07) among individuals on lipid-lowering or antihypertensive medications. The metaGRS had a higher C-index (C = 0.623; 95% CI: 0.615 to 0.631) for incident CAD than any of 6 conventional factors (smoking, diabetes, hypertension, body mass index, self-reported high cholesterol, and family history). For men in the top 20% of metaGRS with &gt;2 conventional factors, 10% cumulative risk of CAD was reached by 48 years of age. The genomic score developed and evaluated here substantially advances the concept of using genomic information to stratify individuals with different trajectories of CAD risk and highlights the potential for genomic screening in early life to complement conventional risk prediction.</description><identifier>ISSN: 0735-1097</identifier><identifier>EISSN: 1558-3597</identifier><identifier>DOI: 10.1016/j.jacc.2018.07.079</identifier><identifier>PMID: 30309464</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Adults ; Age ; Angioplasty ; Antihypertensives ; Assessment centers ; Blood pressure ; Body mass ; Body mass index ; Body size ; Cardiology ; Cardiovascular disease ; Cholesterol ; Confidence intervals ; Coronary artery ; Coronary artery disease ; Coronary Artery Disease - diagnosis ; Coronary Artery Disease - epidemiology ; Coronary Artery Disease - genetics ; Coronary vessels ; Diabetes ; Diabetes mellitus ; Disease prevention ; Family medical history ; Female ; Genetic diversity ; Genetic variance ; Genetics ; Genome-Wide Association Study ; Genomes ; Genomics - methods ; Genomics - statistics &amp; numerical data ; Health and safety screening ; Health risk assessment ; Health risks ; Heart attacks ; Heart diseases ; Heritability ; Hospitals ; Humans ; Hypertension ; Lipids ; Male ; Mass Screening - methods ; Middle Aged ; Multifactorial Inheritance ; Population ; Predictive Value of Tests ; Primary Prevention - methods ; Research Design ; Risk analysis ; Risk Assessment - methods ; Risk Factors ; Smoking ; Studies ; Trajectories ; United Kingdom - epidemiology</subject><ispartof>Journal of the American College of Cardiology, 2018-10, Vol.72 (16), p.1883-1893</ispartof><rights>Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 16, 2018</rights><rights>2018 The Authors 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30309464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inouye, Michael</creatorcontrib><creatorcontrib>Abraham, Gad</creatorcontrib><creatorcontrib>Nelson, Christopher P</creatorcontrib><creatorcontrib>Wood, Angela M</creatorcontrib><creatorcontrib>Sweeting, Michael J</creatorcontrib><creatorcontrib>Dudbridge, Frank</creatorcontrib><creatorcontrib>Lai, Florence Y</creatorcontrib><creatorcontrib>Kaptoge, Stephen</creatorcontrib><creatorcontrib>Brozynska, Marta</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Ye, Shu</creatorcontrib><creatorcontrib>Webb, Thomas R</creatorcontrib><creatorcontrib>Rutter, Martin K</creatorcontrib><creatorcontrib>Tzoulaki, Ioanna</creatorcontrib><creatorcontrib>Patel, Riyaz S</creatorcontrib><creatorcontrib>Loos, Ruth J F</creatorcontrib><creatorcontrib>Keavney, Bernard</creatorcontrib><creatorcontrib>Hemingway, Harry</creatorcontrib><creatorcontrib>Thompson, John</creatorcontrib><creatorcontrib>Watkins, Hugh</creatorcontrib><creatorcontrib>Deloukas, Panos</creatorcontrib><creatorcontrib>Di Angelantonio, Emanuele</creatorcontrib><creatorcontrib>Butterworth, Adam S</creatorcontrib><creatorcontrib>Danesh, John</creatorcontrib><creatorcontrib>Samani, Nilesh J</creatorcontrib><creatorcontrib>UK Biobank CardioMetabolic Consortium CHD Working Group</creatorcontrib><title>Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention</title><title>Journal of the American College of Cardiology</title><addtitle>J Am Coll Cardiol</addtitle><description>Coronary artery disease (CAD) has substantial heritability and a polygenic architecture. However, the potential of genomic risk scores to help predict CAD outcomes has not been evaluated comprehensively, because available studies have involved limited genomic scope and limited sample sizes. This study sought to construct a genomic risk score for CAD and to estimate its potential as a screening tool for primary prevention. Using a meta-analytic approach to combine large-scale, genome-wide, and targeted genetic association data, we developed a new genomic risk score for CAD (metaGRS) consisting of 1.7 million genetic variants. We externally tested metaGRS, both by itself and in combination with available data on conventional risk factors, in 22,242 CAD cases and 460,387 noncases from the UK Biobank. The hazard ratio (HR) for CAD was 1.71 (95% confidence interval [CI]: 1.68 to 1.73) per SD increase in metaGRS, an association larger than any other externally tested genetic risk score previously published. The metaGRS stratified individuals into significantly different life course trajectories of CAD risk, with those in the top 20% of metaGRS distribution having an HR of 4.17 (95% CI: 3.97 to 4.38) compared with those in the bottom 20%. The corresponding HR was 2.83 (95% CI: 2.61 to 3.07) among individuals on lipid-lowering or antihypertensive medications. The metaGRS had a higher C-index (C = 0.623; 95% CI: 0.615 to 0.631) for incident CAD than any of 6 conventional factors (smoking, diabetes, hypertension, body mass index, self-reported high cholesterol, and family history). For men in the top 20% of metaGRS with &gt;2 conventional factors, 10% cumulative risk of CAD was reached by 48 years of age. The genomic score developed and evaluated here substantially advances the concept of using genomic information to stratify individuals with different trajectories of CAD risk and highlights the potential for genomic screening in early life to complement conventional risk prediction.</description><subject>Adults</subject><subject>Age</subject><subject>Angioplasty</subject><subject>Antihypertensives</subject><subject>Assessment centers</subject><subject>Blood pressure</subject><subject>Body mass</subject><subject>Body mass index</subject><subject>Body size</subject><subject>Cardiology</subject><subject>Cardiovascular disease</subject><subject>Cholesterol</subject><subject>Confidence intervals</subject><subject>Coronary artery</subject><subject>Coronary artery disease</subject><subject>Coronary Artery Disease - diagnosis</subject><subject>Coronary Artery Disease - epidemiology</subject><subject>Coronary Artery Disease - genetics</subject><subject>Coronary vessels</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Disease prevention</subject><subject>Family medical history</subject><subject>Female</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>Genetics</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>Genomics - statistics &amp; numerical data</subject><subject>Health and safety screening</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Heart attacks</subject><subject>Heart diseases</subject><subject>Heritability</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Lipids</subject><subject>Male</subject><subject>Mass Screening - methods</subject><subject>Middle Aged</subject><subject>Multifactorial Inheritance</subject><subject>Population</subject><subject>Predictive Value of Tests</subject><subject>Primary Prevention - methods</subject><subject>Research Design</subject><subject>Risk analysis</subject><subject>Risk Assessment - methods</subject><subject>Risk Factors</subject><subject>Smoking</subject><subject>Studies</subject><subject>Trajectories</subject><subject>United Kingdom - epidemiology</subject><issn>0735-1097</issn><issn>1558-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkdtKxDAQhoMouh5ewAsJeOOFXSdNmoMXwrIeQVBEr0uaTTRr26xNu-Dbm8UDKgQGMt9884cgtE9gTIDwk_l4ro0Z50DkGEQ6ag2NSFHIjBZKrKMRCFpkBJTYQtsxzgGAS6I20RYFCopxNkL-yrah8QY_-PiK7zs786b3ocXB4WnoQqu7dzzpepvKuY9WR4t9i5mE46TDk9lQ9_EU3zSL2hu9mozYhS6ZfLMaTcalbVf3u2jD6Trava-6g54uLx6n19nt3dXNdHKbLXLF-ozZynCa00o5TgoFkhlSKRAaCgPWOc2sdNrl1rGKWl5pKRTlEoBRwjnL6Q46-_QuhqqxM5O2d7ouF5-ByqB9-bfT-pfyOSxLTgSXApLg6EvQhbfBxr5sfDS2rnVrwxDLnBCl8rSJJfTwHzoPQ9em560oQRIlRKIOfif6ifL9C_QDRZ2KVw</recordid><startdate>20181016</startdate><enddate>20181016</enddate><creator>Inouye, Michael</creator><creator>Abraham, Gad</creator><creator>Nelson, Christopher P</creator><creator>Wood, Angela M</creator><creator>Sweeting, Michael J</creator><creator>Dudbridge, Frank</creator><creator>Lai, Florence Y</creator><creator>Kaptoge, Stephen</creator><creator>Brozynska, Marta</creator><creator>Wang, Tingting</creator><creator>Ye, Shu</creator><creator>Webb, Thomas R</creator><creator>Rutter, Martin K</creator><creator>Tzoulaki, Ioanna</creator><creator>Patel, Riyaz S</creator><creator>Loos, Ruth J F</creator><creator>Keavney, Bernard</creator><creator>Hemingway, Harry</creator><creator>Thompson, John</creator><creator>Watkins, Hugh</creator><creator>Deloukas, Panos</creator><creator>Di Angelantonio, Emanuele</creator><creator>Butterworth, Adam S</creator><creator>Danesh, John</creator><creator>Samani, Nilesh J</creator><general>Elsevier Limited</general><general>Elsevier Biomedical</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181016</creationdate><title>Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention</title><author>Inouye, Michael ; Abraham, Gad ; Nelson, Christopher P ; Wood, Angela M ; Sweeting, Michael J ; Dudbridge, Frank ; Lai, Florence Y ; Kaptoge, Stephen ; Brozynska, Marta ; Wang, Tingting ; Ye, Shu ; Webb, Thomas R ; Rutter, Martin K ; Tzoulaki, Ioanna ; Patel, Riyaz S ; Loos, Ruth J F ; Keavney, Bernard ; Hemingway, Harry ; Thompson, John ; Watkins, Hugh ; Deloukas, Panos ; Di Angelantonio, Emanuele ; Butterworth, Adam S ; Danesh, John ; Samani, Nilesh J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p294t-4ebc6323b9f6159084c1b907a05c0effa4e8faf2ef4b3e6ba8793680043166423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adults</topic><topic>Age</topic><topic>Angioplasty</topic><topic>Antihypertensives</topic><topic>Assessment centers</topic><topic>Blood pressure</topic><topic>Body mass</topic><topic>Body mass index</topic><topic>Body size</topic><topic>Cardiology</topic><topic>Cardiovascular disease</topic><topic>Cholesterol</topic><topic>Confidence intervals</topic><topic>Coronary artery</topic><topic>Coronary artery disease</topic><topic>Coronary Artery Disease - diagnosis</topic><topic>Coronary Artery Disease - epidemiology</topic><topic>Coronary Artery Disease - genetics</topic><topic>Coronary vessels</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Disease prevention</topic><topic>Family medical history</topic><topic>Female</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>Genetics</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>Genomics - statistics &amp; numerical data</topic><topic>Health and safety screening</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Heart attacks</topic><topic>Heart diseases</topic><topic>Heritability</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Lipids</topic><topic>Male</topic><topic>Mass Screening - methods</topic><topic>Middle Aged</topic><topic>Multifactorial Inheritance</topic><topic>Population</topic><topic>Predictive Value of Tests</topic><topic>Primary Prevention - methods</topic><topic>Research Design</topic><topic>Risk analysis</topic><topic>Risk Assessment - methods</topic><topic>Risk Factors</topic><topic>Smoking</topic><topic>Studies</topic><topic>Trajectories</topic><topic>United Kingdom - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inouye, Michael</creatorcontrib><creatorcontrib>Abraham, Gad</creatorcontrib><creatorcontrib>Nelson, Christopher P</creatorcontrib><creatorcontrib>Wood, Angela M</creatorcontrib><creatorcontrib>Sweeting, Michael J</creatorcontrib><creatorcontrib>Dudbridge, Frank</creatorcontrib><creatorcontrib>Lai, Florence Y</creatorcontrib><creatorcontrib>Kaptoge, Stephen</creatorcontrib><creatorcontrib>Brozynska, Marta</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Ye, Shu</creatorcontrib><creatorcontrib>Webb, Thomas R</creatorcontrib><creatorcontrib>Rutter, Martin K</creatorcontrib><creatorcontrib>Tzoulaki, Ioanna</creatorcontrib><creatorcontrib>Patel, Riyaz S</creatorcontrib><creatorcontrib>Loos, Ruth J F</creatorcontrib><creatorcontrib>Keavney, Bernard</creatorcontrib><creatorcontrib>Hemingway, Harry</creatorcontrib><creatorcontrib>Thompson, John</creatorcontrib><creatorcontrib>Watkins, Hugh</creatorcontrib><creatorcontrib>Deloukas, Panos</creatorcontrib><creatorcontrib>Di Angelantonio, Emanuele</creatorcontrib><creatorcontrib>Butterworth, Adam S</creatorcontrib><creatorcontrib>Danesh, John</creatorcontrib><creatorcontrib>Samani, Nilesh J</creatorcontrib><creatorcontrib>UK Biobank CardioMetabolic Consortium CHD Working Group</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American College of Cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inouye, Michael</au><au>Abraham, Gad</au><au>Nelson, Christopher P</au><au>Wood, Angela M</au><au>Sweeting, Michael J</au><au>Dudbridge, Frank</au><au>Lai, Florence Y</au><au>Kaptoge, Stephen</au><au>Brozynska, Marta</au><au>Wang, Tingting</au><au>Ye, Shu</au><au>Webb, Thomas R</au><au>Rutter, Martin K</au><au>Tzoulaki, Ioanna</au><au>Patel, Riyaz S</au><au>Loos, Ruth J F</au><au>Keavney, Bernard</au><au>Hemingway, Harry</au><au>Thompson, John</au><au>Watkins, Hugh</au><au>Deloukas, Panos</au><au>Di Angelantonio, Emanuele</au><au>Butterworth, Adam S</au><au>Danesh, John</au><au>Samani, Nilesh J</au><aucorp>UK Biobank CardioMetabolic Consortium CHD Working Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention</atitle><jtitle>Journal of the American College of Cardiology</jtitle><addtitle>J Am Coll Cardiol</addtitle><date>2018-10-16</date><risdate>2018</risdate><volume>72</volume><issue>16</issue><spage>1883</spage><epage>1893</epage><pages>1883-1893</pages><issn>0735-1097</issn><eissn>1558-3597</eissn><abstract>Coronary artery disease (CAD) has substantial heritability and a polygenic architecture. However, the potential of genomic risk scores to help predict CAD outcomes has not been evaluated comprehensively, because available studies have involved limited genomic scope and limited sample sizes. This study sought to construct a genomic risk score for CAD and to estimate its potential as a screening tool for primary prevention. Using a meta-analytic approach to combine large-scale, genome-wide, and targeted genetic association data, we developed a new genomic risk score for CAD (metaGRS) consisting of 1.7 million genetic variants. We externally tested metaGRS, both by itself and in combination with available data on conventional risk factors, in 22,242 CAD cases and 460,387 noncases from the UK Biobank. The hazard ratio (HR) for CAD was 1.71 (95% confidence interval [CI]: 1.68 to 1.73) per SD increase in metaGRS, an association larger than any other externally tested genetic risk score previously published. The metaGRS stratified individuals into significantly different life course trajectories of CAD risk, with those in the top 20% of metaGRS distribution having an HR of 4.17 (95% CI: 3.97 to 4.38) compared with those in the bottom 20%. The corresponding HR was 2.83 (95% CI: 2.61 to 3.07) among individuals on lipid-lowering or antihypertensive medications. The metaGRS had a higher C-index (C = 0.623; 95% CI: 0.615 to 0.631) for incident CAD than any of 6 conventional factors (smoking, diabetes, hypertension, body mass index, self-reported high cholesterol, and family history). For men in the top 20% of metaGRS with &gt;2 conventional factors, 10% cumulative risk of CAD was reached by 48 years of age. The genomic score developed and evaluated here substantially advances the concept of using genomic information to stratify individuals with different trajectories of CAD risk and highlights the potential for genomic screening in early life to complement conventional risk prediction.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>30309464</pmid><doi>10.1016/j.jacc.2018.07.079</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-1097
ispartof Journal of the American College of Cardiology, 2018-10, Vol.72 (16), p.1883-1893
issn 0735-1097
1558-3597
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6176870
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adults
Age
Angioplasty
Antihypertensives
Assessment centers
Blood pressure
Body mass
Body mass index
Body size
Cardiology
Cardiovascular disease
Cholesterol
Confidence intervals
Coronary artery
Coronary artery disease
Coronary Artery Disease - diagnosis
Coronary Artery Disease - epidemiology
Coronary Artery Disease - genetics
Coronary vessels
Diabetes
Diabetes mellitus
Disease prevention
Family medical history
Female
Genetic diversity
Genetic variance
Genetics
Genome-Wide Association Study
Genomes
Genomics - methods
Genomics - statistics & numerical data
Health and safety screening
Health risk assessment
Health risks
Heart attacks
Heart diseases
Heritability
Hospitals
Humans
Hypertension
Lipids
Male
Mass Screening - methods
Middle Aged
Multifactorial Inheritance
Population
Predictive Value of Tests
Primary Prevention - methods
Research Design
Risk analysis
Risk Assessment - methods
Risk Factors
Smoking
Studies
Trajectories
United Kingdom - epidemiology
title Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20Risk%20Prediction%20of%20Coronary%20Artery%20Disease%20in%20480,000%20Adults:%20Implications%20for%20Primary%20Prevention&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Cardiology&rft.au=Inouye,%20Michael&rft.aucorp=UK%20Biobank%20CardioMetabolic%20Consortium%20CHD%20Working%20Group&rft.date=2018-10-16&rft.volume=72&rft.issue=16&rft.spage=1883&rft.epage=1893&rft.pages=1883-1893&rft.issn=0735-1097&rft.eissn=1558-3597&rft_id=info:doi/10.1016/j.jacc.2018.07.079&rft_dat=%3Cproquest_pubme%3E2117124277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117124277&rft_id=info:pmid/30309464&rfr_iscdi=true