Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA
Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRN...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-10, Vol.115 (40), p.10082-10087 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10087 |
---|---|
container_issue | 40 |
container_start_page | 10082 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Zhu, Chengming Yan, Qi Weng, Chenchun Hou, Xinhao Mao, Hui Liu, Dun Feng, Xuezhu Guang, Shouhong |
description | Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRNAs) that down-regulate pre-rRNAs through the nuclear RNAi pathway. To further understand the biological roles of risiRNAs, we conducted both forward and reverse genetic screens to search formore suppressor of siRNA (susi) mutants. We isolated a number of genes that are broadly conserved from yeast to humans and are involved in pre-rRNA modification and processing. Among them, SUSI-2(ceRRP8) is homologous to human RRP8 and engages in m1A methylation of the 26S rRNA. C27F2.4(ceBUD23) is an m7G-methyltransferase of the 18S rRNA. E02H1.1(ceDIMT1L) is a predicted m6(2)Am6(2)A-methyltransferase of the 18S rRNA. Mutation of these genes led to a deficiency in modification of rRNAs and elicited accumulation of risiRNAs, which further triggered the cytoplasmic-to-nuclear and cytoplasmic-to-nucleolar translocations of the Argonaute protein NRDE-3. The rRNA processing deficiency also resulted in accumulation of risiRNAs. We also isolated SUSI-3(RIOK-1), which is similar to human RIOK1, that cleaves the 20S rRNA to 18S. We further utilized RNAi and CRISPR-Cas9 technologies to perform candidate-based reverse genetic screens and identified additional pre-rRNA processing factors that suppressed risiRNA production. Therefore, we concluded that erroneous rRNAs can trigger risiRNA generation and subsequently, turn on the nuclear RNAi-mediated gene silencing pathway to inhibit pre-rRNA expression, which may provide a quality control mechanism to maintain homeostasis of rRNAs. |
doi_str_mv | 10.1073/pnas.1800974115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6176571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26531391</jstor_id><sourcerecordid>26531391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-81fbdce711a97cd5b8637cc68b655bdb40200d0905e1aaf1b34c2853c373a0af3</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxa2qqATouadWK_XCZcOMP9beS6UogrZSBBKCs-V1vGGjXTu1N0j973EITYHTHOb33nw8Qr4gTBEku9h4k6aoAGrJEcUHMkGosax4DR_JBIDKUnHKj8lJSmvImFDwiRwzoJRzxSdkcRlj8C5sUxG7JqQwmL64vZ6lYhPDEEZXjA-uWDnvohm74IvQFsaPXXI-uVeS1GXRGTlqTZ_c55d6Su6vLu_mv8rFzc_f89mitJyzsVTYNkvrJKKppV2KRlVMWlupphKiWTYcKMASahAOjWmxYdxSJZhlkhkwLTslP_a-m20zuGzlx2h6vYndYOJfHUyn33Z896BX4VFXKCshMRucvxjE8Gfr0qiHLlnX9-b5FZrmLzJGlawz-v0dug7b6PN5mcJMSFbvDC_2lI0hpejawzIIepeU3iWl_yeVFd9e33Dg_0WTga97YJ3GEA99WgmGu5FPzJmZwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118797391</pqid></control><display><type>article</type><title>Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhu, Chengming ; Yan, Qi ; Weng, Chenchun ; Hou, Xinhao ; Mao, Hui ; Liu, Dun ; Feng, Xuezhu ; Guang, Shouhong</creator><creatorcontrib>Zhu, Chengming ; Yan, Qi ; Weng, Chenchun ; Hou, Xinhao ; Mao, Hui ; Liu, Dun ; Feng, Xuezhu ; Guang, Shouhong</creatorcontrib><description>Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRNAs) that down-regulate pre-rRNAs through the nuclear RNAi pathway. To further understand the biological roles of risiRNAs, we conducted both forward and reverse genetic screens to search formore suppressor of siRNA (susi) mutants. We isolated a number of genes that are broadly conserved from yeast to humans and are involved in pre-rRNA modification and processing. Among them, SUSI-2(ceRRP8) is homologous to human RRP8 and engages in m1A methylation of the 26S rRNA. C27F2.4(ceBUD23) is an m7G-methyltransferase of the 18S rRNA. E02H1.1(ceDIMT1L) is a predicted m6(2)Am6(2)A-methyltransferase of the 18S rRNA. Mutation of these genes led to a deficiency in modification of rRNAs and elicited accumulation of risiRNAs, which further triggered the cytoplasmic-to-nuclear and cytoplasmic-to-nucleolar translocations of the Argonaute protein NRDE-3. The rRNA processing deficiency also resulted in accumulation of risiRNAs. We also isolated SUSI-3(RIOK-1), which is similar to human RIOK1, that cleaves the 20S rRNA to 18S. We further utilized RNAi and CRISPR-Cas9 technologies to perform candidate-based reverse genetic screens and identified additional pre-rRNA processing factors that suppressed risiRNA production. Therefore, we concluded that erroneous rRNAs can trigger risiRNA generation and subsequently, turn on the nuclear RNAi-mediated gene silencing pathway to inhibit pre-rRNA expression, which may provide a quality control mechanism to maintain homeostasis of rRNAs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1800974115</identifier><identifier>PMID: 30224484</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Accumulation ; Antisense RNA ; Biological Sciences ; Biosynthesis ; Cell growth ; CRISPR ; Evolution ; Gene expression ; Gene Silencing ; Genes ; Genetic screening ; Homeostasis ; Homology ; Humans ; Methylation ; Methyltransferases - genetics ; Methyltransferases - metabolism ; Mutants ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nuclear transport ; Nucleoli ; Protein O-Methyltransferase ; Protein transport ; Proteins ; Quality control ; Ribonucleic acid ; Ribosomal DNA ; RNA ; RNA modification ; RNA processing ; RNA, Ribosomal - genetics ; RNA, Ribosomal - metabolism ; RNA, Ribosomal, 18S - genetics ; RNA, Ribosomal, 18S - metabolism ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; RNA-Binding Proteins ; RNA-mediated interference ; rRNA (adenosine-2'-0'-)-methyltransferase ; rRNA 18S ; rRNA 20S ; rRNA 26S ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; siRNA ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-10, Vol.115 (40), p.10082-10087</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 2, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-81fbdce711a97cd5b8637cc68b655bdb40200d0905e1aaf1b34c2853c373a0af3</citedby><cites>FETCH-LOGICAL-c443t-81fbdce711a97cd5b8637cc68b655bdb40200d0905e1aaf1b34c2853c373a0af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26531391$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26531391$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30224484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Chengming</creatorcontrib><creatorcontrib>Yan, Qi</creatorcontrib><creatorcontrib>Weng, Chenchun</creatorcontrib><creatorcontrib>Hou, Xinhao</creatorcontrib><creatorcontrib>Mao, Hui</creatorcontrib><creatorcontrib>Liu, Dun</creatorcontrib><creatorcontrib>Feng, Xuezhu</creatorcontrib><creatorcontrib>Guang, Shouhong</creatorcontrib><title>Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRNAs) that down-regulate pre-rRNAs through the nuclear RNAi pathway. To further understand the biological roles of risiRNAs, we conducted both forward and reverse genetic screens to search formore suppressor of siRNA (susi) mutants. We isolated a number of genes that are broadly conserved from yeast to humans and are involved in pre-rRNA modification and processing. Among them, SUSI-2(ceRRP8) is homologous to human RRP8 and engages in m1A methylation of the 26S rRNA. C27F2.4(ceBUD23) is an m7G-methyltransferase of the 18S rRNA. E02H1.1(ceDIMT1L) is a predicted m6(2)Am6(2)A-methyltransferase of the 18S rRNA. Mutation of these genes led to a deficiency in modification of rRNAs and elicited accumulation of risiRNAs, which further triggered the cytoplasmic-to-nuclear and cytoplasmic-to-nucleolar translocations of the Argonaute protein NRDE-3. The rRNA processing deficiency also resulted in accumulation of risiRNAs. We also isolated SUSI-3(RIOK-1), which is similar to human RIOK1, that cleaves the 20S rRNA to 18S. We further utilized RNAi and CRISPR-Cas9 technologies to perform candidate-based reverse genetic screens and identified additional pre-rRNA processing factors that suppressed risiRNA production. Therefore, we concluded that erroneous rRNAs can trigger risiRNA generation and subsequently, turn on the nuclear RNAi-mediated gene silencing pathway to inhibit pre-rRNA expression, which may provide a quality control mechanism to maintain homeostasis of rRNAs.</description><subject>Accumulation</subject><subject>Antisense RNA</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cell growth</subject><subject>CRISPR</subject><subject>Evolution</subject><subject>Gene expression</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genetic screening</subject><subject>Homeostasis</subject><subject>Homology</subject><subject>Humans</subject><subject>Methylation</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>Mutants</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nuclear transport</subject><subject>Nucleoli</subject><subject>Protein O-Methyltransferase</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Ribonucleic acid</subject><subject>Ribosomal DNA</subject><subject>RNA</subject><subject>RNA modification</subject><subject>RNA processing</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal - metabolism</subject><subject>RNA, Ribosomal, 18S - genetics</subject><subject>RNA, Ribosomal, 18S - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RNA-Binding Proteins</subject><subject>RNA-mediated interference</subject><subject>rRNA (adenosine-2'-0'-)-methyltransferase</subject><subject>rRNA 18S</subject><subject>rRNA 20S</subject><subject>rRNA 26S</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>siRNA</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1PGzEQxa2qqATouadWK_XCZcOMP9beS6UogrZSBBKCs-V1vGGjXTu1N0j973EITYHTHOb33nw8Qr4gTBEku9h4k6aoAGrJEcUHMkGosax4DR_JBIDKUnHKj8lJSmvImFDwiRwzoJRzxSdkcRlj8C5sUxG7JqQwmL64vZ6lYhPDEEZXjA-uWDnvohm74IvQFsaPXXI-uVeS1GXRGTlqTZ_c55d6Su6vLu_mv8rFzc_f89mitJyzsVTYNkvrJKKppV2KRlVMWlupphKiWTYcKMASahAOjWmxYdxSJZhlkhkwLTslP_a-m20zuGzlx2h6vYndYOJfHUyn33Z896BX4VFXKCshMRucvxjE8Gfr0qiHLlnX9-b5FZrmLzJGlawz-v0dug7b6PN5mcJMSFbvDC_2lI0hpejawzIIepeU3iWl_yeVFd9e33Dg_0WTga97YJ3GEA99WgmGu5FPzJmZwg</recordid><startdate>20181002</startdate><enddate>20181002</enddate><creator>Zhu, Chengming</creator><creator>Yan, Qi</creator><creator>Weng, Chenchun</creator><creator>Hou, Xinhao</creator><creator>Mao, Hui</creator><creator>Liu, Dun</creator><creator>Feng, Xuezhu</creator><creator>Guang, Shouhong</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181002</creationdate><title>Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA</title><author>Zhu, Chengming ; Yan, Qi ; Weng, Chenchun ; Hou, Xinhao ; Mao, Hui ; Liu, Dun ; Feng, Xuezhu ; Guang, Shouhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-81fbdce711a97cd5b8637cc68b655bdb40200d0905e1aaf1b34c2853c373a0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Antisense RNA</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cell growth</topic><topic>CRISPR</topic><topic>Evolution</topic><topic>Gene expression</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genetic screening</topic><topic>Homeostasis</topic><topic>Homology</topic><topic>Humans</topic><topic>Methylation</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>Mutants</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nuclear transport</topic><topic>Nucleoli</topic><topic>Protein O-Methyltransferase</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Ribonucleic acid</topic><topic>Ribosomal DNA</topic><topic>RNA</topic><topic>RNA modification</topic><topic>RNA processing</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal - metabolism</topic><topic>RNA, Ribosomal, 18S - genetics</topic><topic>RNA, Ribosomal, 18S - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RNA-Binding Proteins</topic><topic>RNA-mediated interference</topic><topic>rRNA (adenosine-2'-0'-)-methyltransferase</topic><topic>rRNA 18S</topic><topic>rRNA 20S</topic><topic>rRNA 26S</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>siRNA</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chengming</creatorcontrib><creatorcontrib>Yan, Qi</creatorcontrib><creatorcontrib>Weng, Chenchun</creatorcontrib><creatorcontrib>Hou, Xinhao</creatorcontrib><creatorcontrib>Mao, Hui</creatorcontrib><creatorcontrib>Liu, Dun</creatorcontrib><creatorcontrib>Feng, Xuezhu</creatorcontrib><creatorcontrib>Guang, Shouhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chengming</au><au>Yan, Qi</au><au>Weng, Chenchun</au><au>Hou, Xinhao</au><au>Mao, Hui</au><au>Liu, Dun</au><au>Feng, Xuezhu</au><au>Guang, Shouhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-10-02</date><risdate>2018</risdate><volume>115</volume><issue>40</issue><spage>10082</spage><epage>10087</epage><pages>10082-10087</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRNAs) that down-regulate pre-rRNAs through the nuclear RNAi pathway. To further understand the biological roles of risiRNAs, we conducted both forward and reverse genetic screens to search formore suppressor of siRNA (susi) mutants. We isolated a number of genes that are broadly conserved from yeast to humans and are involved in pre-rRNA modification and processing. Among them, SUSI-2(ceRRP8) is homologous to human RRP8 and engages in m1A methylation of the 26S rRNA. C27F2.4(ceBUD23) is an m7G-methyltransferase of the 18S rRNA. E02H1.1(ceDIMT1L) is a predicted m6(2)Am6(2)A-methyltransferase of the 18S rRNA. Mutation of these genes led to a deficiency in modification of rRNAs and elicited accumulation of risiRNAs, which further triggered the cytoplasmic-to-nuclear and cytoplasmic-to-nucleolar translocations of the Argonaute protein NRDE-3. The rRNA processing deficiency also resulted in accumulation of risiRNAs. We also isolated SUSI-3(RIOK-1), which is similar to human RIOK1, that cleaves the 20S rRNA to 18S. We further utilized RNAi and CRISPR-Cas9 technologies to perform candidate-based reverse genetic screens and identified additional pre-rRNA processing factors that suppressed risiRNA production. Therefore, we concluded that erroneous rRNAs can trigger risiRNA generation and subsequently, turn on the nuclear RNAi-mediated gene silencing pathway to inhibit pre-rRNA expression, which may provide a quality control mechanism to maintain homeostasis of rRNAs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30224484</pmid><doi>10.1073/pnas.1800974115</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-10, Vol.115 (40), p.10082-10087 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6176571 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Accumulation Antisense RNA Biological Sciences Biosynthesis Cell growth CRISPR Evolution Gene expression Gene Silencing Genes Genetic screening Homeostasis Homology Humans Methylation Methyltransferases - genetics Methyltransferases - metabolism Mutants Nuclear Proteins - genetics Nuclear Proteins - metabolism Nuclear transport Nucleoli Protein O-Methyltransferase Protein transport Proteins Quality control Ribonucleic acid Ribosomal DNA RNA RNA modification RNA processing RNA, Ribosomal - genetics RNA, Ribosomal - metabolism RNA, Ribosomal, 18S - genetics RNA, Ribosomal, 18S - metabolism RNA, Small Interfering - genetics RNA, Small Interfering - metabolism RNA-Binding Proteins RNA-mediated interference rRNA (adenosine-2'-0'-)-methyltransferase rRNA 18S rRNA 20S rRNA 26S Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism siRNA Yeast |
title | Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Erroneous%20ribosomal%20RNAs%20promote%20the%20generation%20of%20antisense%20ribosomal%20siRNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhu,%20Chengming&rft.date=2018-10-02&rft.volume=115&rft.issue=40&rft.spage=10082&rft.epage=10087&rft.pages=10082-10087&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1800974115&rft_dat=%3Cjstor_pubme%3E26531391%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118797391&rft_id=info:pmid/30224484&rft_jstor_id=26531391&rfr_iscdi=true |