Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA

Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-10, Vol.115 (40), p.10082-10087
Hauptverfasser: Zhu, Chengming, Yan, Qi, Weng, Chenchun, Hou, Xinhao, Mao, Hui, Liu, Dun, Feng, Xuezhu, Guang, Shouhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10087
container_issue 40
container_start_page 10082
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Zhu, Chengming
Yan, Qi
Weng, Chenchun
Hou, Xinhao
Mao, Hui
Liu, Dun
Feng, Xuezhu
Guang, Shouhong
description Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRNAs) that down-regulate pre-rRNAs through the nuclear RNAi pathway. To further understand the biological roles of risiRNAs, we conducted both forward and reverse genetic screens to search formore suppressor of siRNA (susi) mutants. We isolated a number of genes that are broadly conserved from yeast to humans and are involved in pre-rRNA modification and processing. Among them, SUSI-2(ceRRP8) is homologous to human RRP8 and engages in m1A methylation of the 26S rRNA. C27F2.4(ceBUD23) is an m7G-methyltransferase of the 18S rRNA. E02H1.1(ceDIMT1L) is a predicted m6(2)Am6(2)A-methyltransferase of the 18S rRNA. Mutation of these genes led to a deficiency in modification of rRNAs and elicited accumulation of risiRNAs, which further triggered the cytoplasmic-to-nuclear and cytoplasmic-to-nucleolar translocations of the Argonaute protein NRDE-3. The rRNA processing deficiency also resulted in accumulation of risiRNAs. We also isolated SUSI-3(RIOK-1), which is similar to human RIOK1, that cleaves the 20S rRNA to 18S. We further utilized RNAi and CRISPR-Cas9 technologies to perform candidate-based reverse genetic screens and identified additional pre-rRNA processing factors that suppressed risiRNA production. Therefore, we concluded that erroneous rRNAs can trigger risiRNA generation and subsequently, turn on the nuclear RNAi-mediated gene silencing pathway to inhibit pre-rRNA expression, which may provide a quality control mechanism to maintain homeostasis of rRNAs.
doi_str_mv 10.1073/pnas.1800974115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6176571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26531391</jstor_id><sourcerecordid>26531391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-81fbdce711a97cd5b8637cc68b655bdb40200d0905e1aaf1b34c2853c373a0af3</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxa2qqATouadWK_XCZcOMP9beS6UogrZSBBKCs-V1vGGjXTu1N0j973EITYHTHOb33nw8Qr4gTBEku9h4k6aoAGrJEcUHMkGosax4DR_JBIDKUnHKj8lJSmvImFDwiRwzoJRzxSdkcRlj8C5sUxG7JqQwmL64vZ6lYhPDEEZXjA-uWDnvohm74IvQFsaPXXI-uVeS1GXRGTlqTZ_c55d6Su6vLu_mv8rFzc_f89mitJyzsVTYNkvrJKKppV2KRlVMWlupphKiWTYcKMASahAOjWmxYdxSJZhlkhkwLTslP_a-m20zuGzlx2h6vYndYOJfHUyn33Z896BX4VFXKCshMRucvxjE8Gfr0qiHLlnX9-b5FZrmLzJGlawz-v0dug7b6PN5mcJMSFbvDC_2lI0hpejawzIIepeU3iWl_yeVFd9e33Dg_0WTga97YJ3GEA99WgmGu5FPzJmZwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118797391</pqid></control><display><type>article</type><title>Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhu, Chengming ; Yan, Qi ; Weng, Chenchun ; Hou, Xinhao ; Mao, Hui ; Liu, Dun ; Feng, Xuezhu ; Guang, Shouhong</creator><creatorcontrib>Zhu, Chengming ; Yan, Qi ; Weng, Chenchun ; Hou, Xinhao ; Mao, Hui ; Liu, Dun ; Feng, Xuezhu ; Guang, Shouhong</creatorcontrib><description>Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRNAs) that down-regulate pre-rRNAs through the nuclear RNAi pathway. To further understand the biological roles of risiRNAs, we conducted both forward and reverse genetic screens to search formore suppressor of siRNA (susi) mutants. We isolated a number of genes that are broadly conserved from yeast to humans and are involved in pre-rRNA modification and processing. Among them, SUSI-2(ceRRP8) is homologous to human RRP8 and engages in m1A methylation of the 26S rRNA. C27F2.4(ceBUD23) is an m7G-methyltransferase of the 18S rRNA. E02H1.1(ceDIMT1L) is a predicted m6(2)Am6(2)A-methyltransferase of the 18S rRNA. Mutation of these genes led to a deficiency in modification of rRNAs and elicited accumulation of risiRNAs, which further triggered the cytoplasmic-to-nuclear and cytoplasmic-to-nucleolar translocations of the Argonaute protein NRDE-3. The rRNA processing deficiency also resulted in accumulation of risiRNAs. We also isolated SUSI-3(RIOK-1), which is similar to human RIOK1, that cleaves the 20S rRNA to 18S. We further utilized RNAi and CRISPR-Cas9 technologies to perform candidate-based reverse genetic screens and identified additional pre-rRNA processing factors that suppressed risiRNA production. Therefore, we concluded that erroneous rRNAs can trigger risiRNA generation and subsequently, turn on the nuclear RNAi-mediated gene silencing pathway to inhibit pre-rRNA expression, which may provide a quality control mechanism to maintain homeostasis of rRNAs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1800974115</identifier><identifier>PMID: 30224484</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Accumulation ; Antisense RNA ; Biological Sciences ; Biosynthesis ; Cell growth ; CRISPR ; Evolution ; Gene expression ; Gene Silencing ; Genes ; Genetic screening ; Homeostasis ; Homology ; Humans ; Methylation ; Methyltransferases - genetics ; Methyltransferases - metabolism ; Mutants ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nuclear transport ; Nucleoli ; Protein O-Methyltransferase ; Protein transport ; Proteins ; Quality control ; Ribonucleic acid ; Ribosomal DNA ; RNA ; RNA modification ; RNA processing ; RNA, Ribosomal - genetics ; RNA, Ribosomal - metabolism ; RNA, Ribosomal, 18S - genetics ; RNA, Ribosomal, 18S - metabolism ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; RNA-Binding Proteins ; RNA-mediated interference ; rRNA (adenosine-2'-0'-)-methyltransferase ; rRNA 18S ; rRNA 20S ; rRNA 26S ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; siRNA ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-10, Vol.115 (40), p.10082-10087</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 2, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-81fbdce711a97cd5b8637cc68b655bdb40200d0905e1aaf1b34c2853c373a0af3</citedby><cites>FETCH-LOGICAL-c443t-81fbdce711a97cd5b8637cc68b655bdb40200d0905e1aaf1b34c2853c373a0af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26531391$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26531391$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30224484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Chengming</creatorcontrib><creatorcontrib>Yan, Qi</creatorcontrib><creatorcontrib>Weng, Chenchun</creatorcontrib><creatorcontrib>Hou, Xinhao</creatorcontrib><creatorcontrib>Mao, Hui</creatorcontrib><creatorcontrib>Liu, Dun</creatorcontrib><creatorcontrib>Feng, Xuezhu</creatorcontrib><creatorcontrib>Guang, Shouhong</creatorcontrib><title>Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRNAs) that down-regulate pre-rRNAs through the nuclear RNAi pathway. To further understand the biological roles of risiRNAs, we conducted both forward and reverse genetic screens to search formore suppressor of siRNA (susi) mutants. We isolated a number of genes that are broadly conserved from yeast to humans and are involved in pre-rRNA modification and processing. Among them, SUSI-2(ceRRP8) is homologous to human RRP8 and engages in m1A methylation of the 26S rRNA. C27F2.4(ceBUD23) is an m7G-methyltransferase of the 18S rRNA. E02H1.1(ceDIMT1L) is a predicted m6(2)Am6(2)A-methyltransferase of the 18S rRNA. Mutation of these genes led to a deficiency in modification of rRNAs and elicited accumulation of risiRNAs, which further triggered the cytoplasmic-to-nuclear and cytoplasmic-to-nucleolar translocations of the Argonaute protein NRDE-3. The rRNA processing deficiency also resulted in accumulation of risiRNAs. We also isolated SUSI-3(RIOK-1), which is similar to human RIOK1, that cleaves the 20S rRNA to 18S. We further utilized RNAi and CRISPR-Cas9 technologies to perform candidate-based reverse genetic screens and identified additional pre-rRNA processing factors that suppressed risiRNA production. Therefore, we concluded that erroneous rRNAs can trigger risiRNA generation and subsequently, turn on the nuclear RNAi-mediated gene silencing pathway to inhibit pre-rRNA expression, which may provide a quality control mechanism to maintain homeostasis of rRNAs.</description><subject>Accumulation</subject><subject>Antisense RNA</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cell growth</subject><subject>CRISPR</subject><subject>Evolution</subject><subject>Gene expression</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genetic screening</subject><subject>Homeostasis</subject><subject>Homology</subject><subject>Humans</subject><subject>Methylation</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>Mutants</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nuclear transport</subject><subject>Nucleoli</subject><subject>Protein O-Methyltransferase</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Ribonucleic acid</subject><subject>Ribosomal DNA</subject><subject>RNA</subject><subject>RNA modification</subject><subject>RNA processing</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal - metabolism</subject><subject>RNA, Ribosomal, 18S - genetics</subject><subject>RNA, Ribosomal, 18S - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RNA-Binding Proteins</subject><subject>RNA-mediated interference</subject><subject>rRNA (adenosine-2'-0'-)-methyltransferase</subject><subject>rRNA 18S</subject><subject>rRNA 20S</subject><subject>rRNA 26S</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>siRNA</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1PGzEQxa2qqATouadWK_XCZcOMP9beS6UogrZSBBKCs-V1vGGjXTu1N0j973EITYHTHOb33nw8Qr4gTBEku9h4k6aoAGrJEcUHMkGosax4DR_JBIDKUnHKj8lJSmvImFDwiRwzoJRzxSdkcRlj8C5sUxG7JqQwmL64vZ6lYhPDEEZXjA-uWDnvohm74IvQFsaPXXI-uVeS1GXRGTlqTZ_c55d6Su6vLu_mv8rFzc_f89mitJyzsVTYNkvrJKKppV2KRlVMWlupphKiWTYcKMASahAOjWmxYdxSJZhlkhkwLTslP_a-m20zuGzlx2h6vYndYOJfHUyn33Z896BX4VFXKCshMRucvxjE8Gfr0qiHLlnX9-b5FZrmLzJGlawz-v0dug7b6PN5mcJMSFbvDC_2lI0hpejawzIIepeU3iWl_yeVFd9e33Dg_0WTga97YJ3GEA99WgmGu5FPzJmZwg</recordid><startdate>20181002</startdate><enddate>20181002</enddate><creator>Zhu, Chengming</creator><creator>Yan, Qi</creator><creator>Weng, Chenchun</creator><creator>Hou, Xinhao</creator><creator>Mao, Hui</creator><creator>Liu, Dun</creator><creator>Feng, Xuezhu</creator><creator>Guang, Shouhong</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181002</creationdate><title>Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA</title><author>Zhu, Chengming ; Yan, Qi ; Weng, Chenchun ; Hou, Xinhao ; Mao, Hui ; Liu, Dun ; Feng, Xuezhu ; Guang, Shouhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-81fbdce711a97cd5b8637cc68b655bdb40200d0905e1aaf1b34c2853c373a0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Antisense RNA</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cell growth</topic><topic>CRISPR</topic><topic>Evolution</topic><topic>Gene expression</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genetic screening</topic><topic>Homeostasis</topic><topic>Homology</topic><topic>Humans</topic><topic>Methylation</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>Mutants</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nuclear transport</topic><topic>Nucleoli</topic><topic>Protein O-Methyltransferase</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Ribonucleic acid</topic><topic>Ribosomal DNA</topic><topic>RNA</topic><topic>RNA modification</topic><topic>RNA processing</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal - metabolism</topic><topic>RNA, Ribosomal, 18S - genetics</topic><topic>RNA, Ribosomal, 18S - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RNA-Binding Proteins</topic><topic>RNA-mediated interference</topic><topic>rRNA (adenosine-2'-0'-)-methyltransferase</topic><topic>rRNA 18S</topic><topic>rRNA 20S</topic><topic>rRNA 26S</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>siRNA</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chengming</creatorcontrib><creatorcontrib>Yan, Qi</creatorcontrib><creatorcontrib>Weng, Chenchun</creatorcontrib><creatorcontrib>Hou, Xinhao</creatorcontrib><creatorcontrib>Mao, Hui</creatorcontrib><creatorcontrib>Liu, Dun</creatorcontrib><creatorcontrib>Feng, Xuezhu</creatorcontrib><creatorcontrib>Guang, Shouhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chengming</au><au>Yan, Qi</au><au>Weng, Chenchun</au><au>Hou, Xinhao</au><au>Mao, Hui</au><au>Liu, Dun</au><au>Feng, Xuezhu</au><au>Guang, Shouhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-10-02</date><risdate>2018</risdate><volume>115</volume><issue>40</issue><spage>10082</spage><epage>10087</epage><pages>10082-10087</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRNAs) that down-regulate pre-rRNAs through the nuclear RNAi pathway. To further understand the biological roles of risiRNAs, we conducted both forward and reverse genetic screens to search formore suppressor of siRNA (susi) mutants. We isolated a number of genes that are broadly conserved from yeast to humans and are involved in pre-rRNA modification and processing. Among them, SUSI-2(ceRRP8) is homologous to human RRP8 and engages in m1A methylation of the 26S rRNA. C27F2.4(ceBUD23) is an m7G-methyltransferase of the 18S rRNA. E02H1.1(ceDIMT1L) is a predicted m6(2)Am6(2)A-methyltransferase of the 18S rRNA. Mutation of these genes led to a deficiency in modification of rRNAs and elicited accumulation of risiRNAs, which further triggered the cytoplasmic-to-nuclear and cytoplasmic-to-nucleolar translocations of the Argonaute protein NRDE-3. The rRNA processing deficiency also resulted in accumulation of risiRNAs. We also isolated SUSI-3(RIOK-1), which is similar to human RIOK1, that cleaves the 20S rRNA to 18S. We further utilized RNAi and CRISPR-Cas9 technologies to perform candidate-based reverse genetic screens and identified additional pre-rRNA processing factors that suppressed risiRNA production. Therefore, we concluded that erroneous rRNAs can trigger risiRNA generation and subsequently, turn on the nuclear RNAi-mediated gene silencing pathway to inhibit pre-rRNA expression, which may provide a quality control mechanism to maintain homeostasis of rRNAs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30224484</pmid><doi>10.1073/pnas.1800974115</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-10, Vol.115 (40), p.10082-10087
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6176571
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Accumulation
Antisense RNA
Biological Sciences
Biosynthesis
Cell growth
CRISPR
Evolution
Gene expression
Gene Silencing
Genes
Genetic screening
Homeostasis
Homology
Humans
Methylation
Methyltransferases - genetics
Methyltransferases - metabolism
Mutants
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nuclear transport
Nucleoli
Protein O-Methyltransferase
Protein transport
Proteins
Quality control
Ribonucleic acid
Ribosomal DNA
RNA
RNA modification
RNA processing
RNA, Ribosomal - genetics
RNA, Ribosomal - metabolism
RNA, Ribosomal, 18S - genetics
RNA, Ribosomal, 18S - metabolism
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
RNA-Binding Proteins
RNA-mediated interference
rRNA (adenosine-2'-0'-)-methyltransferase
rRNA 18S
rRNA 20S
rRNA 26S
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
siRNA
Yeast
title Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Erroneous%20ribosomal%20RNAs%20promote%20the%20generation%20of%20antisense%20ribosomal%20siRNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhu,%20Chengming&rft.date=2018-10-02&rft.volume=115&rft.issue=40&rft.spage=10082&rft.epage=10087&rft.pages=10082-10087&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1800974115&rft_dat=%3Cjstor_pubme%3E26531391%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118797391&rft_id=info:pmid/30224484&rft_jstor_id=26531391&rfr_iscdi=true