Reading of the non‐template DNA by transcription elongation factors
Summary Unlike transcription initiation and termination, which have easily discernable signals, such as promoters and terminators, elongation is regulated through a dynamic network involving RNA/DNA pause signals and states‐rather than sequence‐specific protein interactions. A report by Nedialkov et...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2018-08, Vol.109 (4), p.417-421 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 421 |
---|---|
container_issue | 4 |
container_start_page | 417 |
container_title | Molecular microbiology |
container_volume | 109 |
creator | Svetlov, Vladimir Nudler, Evgeny |
description | Summary
Unlike transcription initiation and termination, which have easily discernable signals, such as promoters and terminators, elongation is regulated through a dynamic network involving RNA/DNA pause signals and states‐rather than sequence‐specific protein interactions. A report by Nedialkov et al. () provides experimental evidence for sequence‐specific recruitment of elongation factor RfaH to transcribing RNA polymerase (RNAP) and outlines the mechanism of gene expression regulation by restraint (‘locking’) of the DNA non‐template strand. According to this model, the elongation complex pauses at the so called ‘operon polarity sequence’ (found in some long bacterial operons coding for virulence genes), when the usually flexible non‐template DNA strand adopts a distinct hairpin‐loop conformation on the surface of transcribing RNAP. Sequence‐specific binding of RfaH to this DNA segment facilitates conversion of RfaH from its inactive closed to its active open conformation. The interaction network formed between RfaH, non‐template DNA and RNAP locks DNA in a conformation that renders RNAP resistant to pausing and termination. The effects of such locking on elongation can be mimicked by restraint of the non‐template strand due to its shortening. This work advances our understanding of transcription regulation and has important implications for the action of general elongation factors, such as NusG, which lack apparent sequence‐specificity, as well as for the mechanisms of other linked processes, such as transcription‐coupled DNA repair. |
doi_str_mv | 10.1111/mmi.13984 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6173973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116560130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4434-a109140b501f93f99063d8b60319fe8abe63bacbdbc2b4c2d56864375dc215773</originalsourceid><addsrcrecordid>eNp1kc1KBSEYhiWKOv0suoEYaFOLKR1HHTfBoX_oB6KgnajjnIwZPemc4uy6hK6xK8k6FRXk5hO-h4dXXwDWEdxB6ex2nd1BmFflHBggTElecFLNgwHkBOa4Km6XwHKM9xAiDCleBEsFZ4SVjA3A4ZWRtXWjzDdZf2cy593r80tvunEre5MdXAwzNc36IF3UwY57611mWu9G8uPaSN37EFfBQiPbaNY-5wq4OTq83j_Jzy6PT_eHZ7kuS1zmEkGOSqgIRA3HDecpTV0pCjHijamkMhQrqVWtdKFKXdSEVrTEjNS6QIQxvAL2Zt7xRHWm1salZK0YB9vJMBVeWvF74-ydGPlHQRHDnOEk2PoUBP8wMbEXnY3atK10xk-iKCCuGKSUVwnd_IPe-0lw6XmiQIgS-v6bidqeUTr4GINpvsMgKN7LEakc8VFOYjd-pv8mv9pIwO4MeLKtmf5vEufnpzPlG-5Vmcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116560130</pqid></control><display><type>article</type><title>Reading of the non‐template DNA by transcription elongation factors</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Svetlov, Vladimir ; Nudler, Evgeny</creator><creatorcontrib>Svetlov, Vladimir ; Nudler, Evgeny</creatorcontrib><description>Summary
Unlike transcription initiation and termination, which have easily discernable signals, such as promoters and terminators, elongation is regulated through a dynamic network involving RNA/DNA pause signals and states‐rather than sequence‐specific protein interactions. A report by Nedialkov et al. () provides experimental evidence for sequence‐specific recruitment of elongation factor RfaH to transcribing RNA polymerase (RNAP) and outlines the mechanism of gene expression regulation by restraint (‘locking’) of the DNA non‐template strand. According to this model, the elongation complex pauses at the so called ‘operon polarity sequence’ (found in some long bacterial operons coding for virulence genes), when the usually flexible non‐template DNA strand adopts a distinct hairpin‐loop conformation on the surface of transcribing RNAP. Sequence‐specific binding of RfaH to this DNA segment facilitates conversion of RfaH from its inactive closed to its active open conformation. The interaction network formed between RfaH, non‐template DNA and RNAP locks DNA in a conformation that renders RNAP resistant to pausing and termination. The effects of such locking on elongation can be mimicked by restraint of the non‐template strand due to its shortening. This work advances our understanding of transcription regulation and has important implications for the action of general elongation factors, such as NusG, which lack apparent sequence‐specificity, as well as for the mechanisms of other linked processes, such as transcription‐coupled DNA repair.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.13984</identifier><identifier>PMID: 29757477</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Amino acid sequence ; Constraints ; Deoxyribonucleic acid ; DNA ; DNA repair ; DNA-directed RNA polymerase ; DNA-Directed RNA Polymerases - genetics ; Elongation ; Escherichia coli Proteins - genetics ; Gene expression ; Gene regulation ; Locks ; Nucleotide sequence ; Operons ; Peptide Elongation Factors - genetics ; Polarity ; Protein interaction ; Proteins ; Reading ; Ribonucleic acid ; RNA ; RNA polymerase ; Trans-Activators - genetics ; Transcription elongation ; Transcription factors ; Transcription initiation ; Transcription termination ; Transcription, Genetic ; Transcriptional Elongation Factors ; Virulence</subject><ispartof>Molecular microbiology, 2018-08, Vol.109 (4), p.417-421</ispartof><rights>2018 John Wiley & Sons Ltd</rights><rights>2018 John Wiley & Sons Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4434-a109140b501f93f99063d8b60319fe8abe63bacbdbc2b4c2d56864375dc215773</citedby><cites>FETCH-LOGICAL-c4434-a109140b501f93f99063d8b60319fe8abe63bacbdbc2b4c2d56864375dc215773</cites><orcidid>0000-0002-1977-4271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.13984$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.13984$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29757477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Svetlov, Vladimir</creatorcontrib><creatorcontrib>Nudler, Evgeny</creatorcontrib><title>Reading of the non‐template DNA by transcription elongation factors</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
Unlike transcription initiation and termination, which have easily discernable signals, such as promoters and terminators, elongation is regulated through a dynamic network involving RNA/DNA pause signals and states‐rather than sequence‐specific protein interactions. A report by Nedialkov et al. () provides experimental evidence for sequence‐specific recruitment of elongation factor RfaH to transcribing RNA polymerase (RNAP) and outlines the mechanism of gene expression regulation by restraint (‘locking’) of the DNA non‐template strand. According to this model, the elongation complex pauses at the so called ‘operon polarity sequence’ (found in some long bacterial operons coding for virulence genes), when the usually flexible non‐template DNA strand adopts a distinct hairpin‐loop conformation on the surface of transcribing RNAP. Sequence‐specific binding of RfaH to this DNA segment facilitates conversion of RfaH from its inactive closed to its active open conformation. The interaction network formed between RfaH, non‐template DNA and RNAP locks DNA in a conformation that renders RNAP resistant to pausing and termination. The effects of such locking on elongation can be mimicked by restraint of the non‐template strand due to its shortening. This work advances our understanding of transcription regulation and has important implications for the action of general elongation factors, such as NusG, which lack apparent sequence‐specificity, as well as for the mechanisms of other linked processes, such as transcription‐coupled DNA repair.</description><subject>Amino acid sequence</subject><subject>Constraints</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA repair</subject><subject>DNA-directed RNA polymerase</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>Elongation</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Locks</subject><subject>Nucleotide sequence</subject><subject>Operons</subject><subject>Peptide Elongation Factors - genetics</subject><subject>Polarity</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Reading</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>Trans-Activators - genetics</subject><subject>Transcription elongation</subject><subject>Transcription factors</subject><subject>Transcription initiation</subject><subject>Transcription termination</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Elongation Factors</subject><subject>Virulence</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1KBSEYhiWKOv0suoEYaFOLKR1HHTfBoX_oB6KgnajjnIwZPemc4uy6hK6xK8k6FRXk5hO-h4dXXwDWEdxB6ex2nd1BmFflHBggTElecFLNgwHkBOa4Km6XwHKM9xAiDCleBEsFZ4SVjA3A4ZWRtXWjzDdZf2cy593r80tvunEre5MdXAwzNc36IF3UwY57611mWu9G8uPaSN37EFfBQiPbaNY-5wq4OTq83j_Jzy6PT_eHZ7kuS1zmEkGOSqgIRA3HDecpTV0pCjHijamkMhQrqVWtdKFKXdSEVrTEjNS6QIQxvAL2Zt7xRHWm1salZK0YB9vJMBVeWvF74-ydGPlHQRHDnOEk2PoUBP8wMbEXnY3atK10xk-iKCCuGKSUVwnd_IPe-0lw6XmiQIgS-v6bidqeUTr4GINpvsMgKN7LEakc8VFOYjd-pv8mv9pIwO4MeLKtmf5vEufnpzPlG-5Vmcw</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Svetlov, Vladimir</creator><creator>Nudler, Evgeny</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1977-4271</orcidid></search><sort><creationdate>201808</creationdate><title>Reading of the non‐template DNA by transcription elongation factors</title><author>Svetlov, Vladimir ; Nudler, Evgeny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4434-a109140b501f93f99063d8b60319fe8abe63bacbdbc2b4c2d56864375dc215773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino acid sequence</topic><topic>Constraints</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA repair</topic><topic>DNA-directed RNA polymerase</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>Elongation</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Locks</topic><topic>Nucleotide sequence</topic><topic>Operons</topic><topic>Peptide Elongation Factors - genetics</topic><topic>Polarity</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Reading</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>Trans-Activators - genetics</topic><topic>Transcription elongation</topic><topic>Transcription factors</topic><topic>Transcription initiation</topic><topic>Transcription termination</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Elongation Factors</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svetlov, Vladimir</creatorcontrib><creatorcontrib>Nudler, Evgeny</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svetlov, Vladimir</au><au>Nudler, Evgeny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reading of the non‐template DNA by transcription elongation factors</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2018-08</date><risdate>2018</risdate><volume>109</volume><issue>4</issue><spage>417</spage><epage>421</epage><pages>417-421</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
Unlike transcription initiation and termination, which have easily discernable signals, such as promoters and terminators, elongation is regulated through a dynamic network involving RNA/DNA pause signals and states‐rather than sequence‐specific protein interactions. A report by Nedialkov et al. () provides experimental evidence for sequence‐specific recruitment of elongation factor RfaH to transcribing RNA polymerase (RNAP) and outlines the mechanism of gene expression regulation by restraint (‘locking’) of the DNA non‐template strand. According to this model, the elongation complex pauses at the so called ‘operon polarity sequence’ (found in some long bacterial operons coding for virulence genes), when the usually flexible non‐template DNA strand adopts a distinct hairpin‐loop conformation on the surface of transcribing RNAP. Sequence‐specific binding of RfaH to this DNA segment facilitates conversion of RfaH from its inactive closed to its active open conformation. The interaction network formed between RfaH, non‐template DNA and RNAP locks DNA in a conformation that renders RNAP resistant to pausing and termination. The effects of such locking on elongation can be mimicked by restraint of the non‐template strand due to its shortening. This work advances our understanding of transcription regulation and has important implications for the action of general elongation factors, such as NusG, which lack apparent sequence‐specificity, as well as for the mechanisms of other linked processes, such as transcription‐coupled DNA repair.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>29757477</pmid><doi>10.1111/mmi.13984</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1977-4271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2018-08, Vol.109 (4), p.417-421 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6173973 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals |
subjects | Amino acid sequence Constraints Deoxyribonucleic acid DNA DNA repair DNA-directed RNA polymerase DNA-Directed RNA Polymerases - genetics Elongation Escherichia coli Proteins - genetics Gene expression Gene regulation Locks Nucleotide sequence Operons Peptide Elongation Factors - genetics Polarity Protein interaction Proteins Reading Ribonucleic acid RNA RNA polymerase Trans-Activators - genetics Transcription elongation Transcription factors Transcription initiation Transcription termination Transcription, Genetic Transcriptional Elongation Factors Virulence |
title | Reading of the non‐template DNA by transcription elongation factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reading%20of%20the%20non%E2%80%90template%20DNA%20by%20transcription%20elongation%20factors&rft.jtitle=Molecular%20microbiology&rft.au=Svetlov,%20Vladimir&rft.date=2018-08&rft.volume=109&rft.issue=4&rft.spage=417&rft.epage=421&rft.pages=417-421&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.13984&rft_dat=%3Cproquest_pubme%3E2116560130%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116560130&rft_id=info:pmid/29757477&rfr_iscdi=true |