Reading of the non‐template DNA by transcription elongation factors

Summary Unlike transcription initiation and termination, which have easily discernable signals, such as promoters and terminators, elongation is regulated through a dynamic network involving RNA/DNA pause signals and states‐rather than sequence‐specific protein interactions. A report by Nedialkov et...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2018-08, Vol.109 (4), p.417-421
Hauptverfasser: Svetlov, Vladimir, Nudler, Evgeny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 421
container_issue 4
container_start_page 417
container_title Molecular microbiology
container_volume 109
creator Svetlov, Vladimir
Nudler, Evgeny
description Summary Unlike transcription initiation and termination, which have easily discernable signals, such as promoters and terminators, elongation is regulated through a dynamic network involving RNA/DNA pause signals and states‐rather than sequence‐specific protein interactions. A report by Nedialkov et al. () provides experimental evidence for sequence‐specific recruitment of elongation factor RfaH to transcribing RNA polymerase (RNAP) and outlines the mechanism of gene expression regulation by restraint (‘locking’) of the DNA non‐template strand. According to this model, the elongation complex pauses at the so called ‘operon polarity sequence’ (found in some long bacterial operons coding for virulence genes), when the usually flexible non‐template DNA strand adopts a distinct hairpin‐loop conformation on the surface of transcribing RNAP. Sequence‐specific binding of RfaH to this DNA segment facilitates conversion of RfaH from its inactive closed to its active open conformation. The interaction network formed between RfaH, non‐template DNA and RNAP locks DNA in a conformation that renders RNAP resistant to pausing and termination. The effects of such locking on elongation can be mimicked by restraint of the non‐template strand due to its shortening. This work advances our understanding of transcription regulation and has important implications for the action of general elongation factors, such as NusG, which lack apparent sequence‐specificity, as well as for the mechanisms of other linked processes, such as transcription‐coupled DNA repair.
doi_str_mv 10.1111/mmi.13984
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6173973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116560130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4434-a109140b501f93f99063d8b60319fe8abe63bacbdbc2b4c2d56864375dc215773</originalsourceid><addsrcrecordid>eNp1kc1KBSEYhiWKOv0suoEYaFOLKR1HHTfBoX_oB6KgnajjnIwZPemc4uy6hK6xK8k6FRXk5hO-h4dXXwDWEdxB6ex2nd1BmFflHBggTElecFLNgwHkBOa4Km6XwHKM9xAiDCleBEsFZ4SVjA3A4ZWRtXWjzDdZf2cy593r80tvunEre5MdXAwzNc36IF3UwY57611mWu9G8uPaSN37EFfBQiPbaNY-5wq4OTq83j_Jzy6PT_eHZ7kuS1zmEkGOSqgIRA3HDecpTV0pCjHijamkMhQrqVWtdKFKXdSEVrTEjNS6QIQxvAL2Zt7xRHWm1salZK0YB9vJMBVeWvF74-ydGPlHQRHDnOEk2PoUBP8wMbEXnY3atK10xk-iKCCuGKSUVwnd_IPe-0lw6XmiQIgS-v6bidqeUTr4GINpvsMgKN7LEakc8VFOYjd-pv8mv9pIwO4MeLKtmf5vEufnpzPlG-5Vmcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116560130</pqid></control><display><type>article</type><title>Reading of the non‐template DNA by transcription elongation factors</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Svetlov, Vladimir ; Nudler, Evgeny</creator><creatorcontrib>Svetlov, Vladimir ; Nudler, Evgeny</creatorcontrib><description>Summary Unlike transcription initiation and termination, which have easily discernable signals, such as promoters and terminators, elongation is regulated through a dynamic network involving RNA/DNA pause signals and states‐rather than sequence‐specific protein interactions. A report by Nedialkov et al. () provides experimental evidence for sequence‐specific recruitment of elongation factor RfaH to transcribing RNA polymerase (RNAP) and outlines the mechanism of gene expression regulation by restraint (‘locking’) of the DNA non‐template strand. According to this model, the elongation complex pauses at the so called ‘operon polarity sequence’ (found in some long bacterial operons coding for virulence genes), when the usually flexible non‐template DNA strand adopts a distinct hairpin‐loop conformation on the surface of transcribing RNAP. Sequence‐specific binding of RfaH to this DNA segment facilitates conversion of RfaH from its inactive closed to its active open conformation. The interaction network formed between RfaH, non‐template DNA and RNAP locks DNA in a conformation that renders RNAP resistant to pausing and termination. The effects of such locking on elongation can be mimicked by restraint of the non‐template strand due to its shortening. This work advances our understanding of transcription regulation and has important implications for the action of general elongation factors, such as NusG, which lack apparent sequence‐specificity, as well as for the mechanisms of other linked processes, such as transcription‐coupled DNA repair.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.13984</identifier><identifier>PMID: 29757477</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Amino acid sequence ; Constraints ; Deoxyribonucleic acid ; DNA ; DNA repair ; DNA-directed RNA polymerase ; DNA-Directed RNA Polymerases - genetics ; Elongation ; Escherichia coli Proteins - genetics ; Gene expression ; Gene regulation ; Locks ; Nucleotide sequence ; Operons ; Peptide Elongation Factors - genetics ; Polarity ; Protein interaction ; Proteins ; Reading ; Ribonucleic acid ; RNA ; RNA polymerase ; Trans-Activators - genetics ; Transcription elongation ; Transcription factors ; Transcription initiation ; Transcription termination ; Transcription, Genetic ; Transcriptional Elongation Factors ; Virulence</subject><ispartof>Molecular microbiology, 2018-08, Vol.109 (4), p.417-421</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4434-a109140b501f93f99063d8b60319fe8abe63bacbdbc2b4c2d56864375dc215773</citedby><cites>FETCH-LOGICAL-c4434-a109140b501f93f99063d8b60319fe8abe63bacbdbc2b4c2d56864375dc215773</cites><orcidid>0000-0002-1977-4271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.13984$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.13984$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29757477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Svetlov, Vladimir</creatorcontrib><creatorcontrib>Nudler, Evgeny</creatorcontrib><title>Reading of the non‐template DNA by transcription elongation factors</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Unlike transcription initiation and termination, which have easily discernable signals, such as promoters and terminators, elongation is regulated through a dynamic network involving RNA/DNA pause signals and states‐rather than sequence‐specific protein interactions. A report by Nedialkov et al. () provides experimental evidence for sequence‐specific recruitment of elongation factor RfaH to transcribing RNA polymerase (RNAP) and outlines the mechanism of gene expression regulation by restraint (‘locking’) of the DNA non‐template strand. According to this model, the elongation complex pauses at the so called ‘operon polarity sequence’ (found in some long bacterial operons coding for virulence genes), when the usually flexible non‐template DNA strand adopts a distinct hairpin‐loop conformation on the surface of transcribing RNAP. Sequence‐specific binding of RfaH to this DNA segment facilitates conversion of RfaH from its inactive closed to its active open conformation. The interaction network formed between RfaH, non‐template DNA and RNAP locks DNA in a conformation that renders RNAP resistant to pausing and termination. The effects of such locking on elongation can be mimicked by restraint of the non‐template strand due to its shortening. This work advances our understanding of transcription regulation and has important implications for the action of general elongation factors, such as NusG, which lack apparent sequence‐specificity, as well as for the mechanisms of other linked processes, such as transcription‐coupled DNA repair.</description><subject>Amino acid sequence</subject><subject>Constraints</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA repair</subject><subject>DNA-directed RNA polymerase</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>Elongation</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Locks</subject><subject>Nucleotide sequence</subject><subject>Operons</subject><subject>Peptide Elongation Factors - genetics</subject><subject>Polarity</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Reading</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>Trans-Activators - genetics</subject><subject>Transcription elongation</subject><subject>Transcription factors</subject><subject>Transcription initiation</subject><subject>Transcription termination</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Elongation Factors</subject><subject>Virulence</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1KBSEYhiWKOv0suoEYaFOLKR1HHTfBoX_oB6KgnajjnIwZPemc4uy6hK6xK8k6FRXk5hO-h4dXXwDWEdxB6ex2nd1BmFflHBggTElecFLNgwHkBOa4Km6XwHKM9xAiDCleBEsFZ4SVjA3A4ZWRtXWjzDdZf2cy593r80tvunEre5MdXAwzNc36IF3UwY57611mWu9G8uPaSN37EFfBQiPbaNY-5wq4OTq83j_Jzy6PT_eHZ7kuS1zmEkGOSqgIRA3HDecpTV0pCjHijamkMhQrqVWtdKFKXdSEVrTEjNS6QIQxvAL2Zt7xRHWm1salZK0YB9vJMBVeWvF74-ydGPlHQRHDnOEk2PoUBP8wMbEXnY3atK10xk-iKCCuGKSUVwnd_IPe-0lw6XmiQIgS-v6bidqeUTr4GINpvsMgKN7LEakc8VFOYjd-pv8mv9pIwO4MeLKtmf5vEufnpzPlG-5Vmcw</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Svetlov, Vladimir</creator><creator>Nudler, Evgeny</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1977-4271</orcidid></search><sort><creationdate>201808</creationdate><title>Reading of the non‐template DNA by transcription elongation factors</title><author>Svetlov, Vladimir ; Nudler, Evgeny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4434-a109140b501f93f99063d8b60319fe8abe63bacbdbc2b4c2d56864375dc215773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino acid sequence</topic><topic>Constraints</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA repair</topic><topic>DNA-directed RNA polymerase</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>Elongation</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Locks</topic><topic>Nucleotide sequence</topic><topic>Operons</topic><topic>Peptide Elongation Factors - genetics</topic><topic>Polarity</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Reading</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>Trans-Activators - genetics</topic><topic>Transcription elongation</topic><topic>Transcription factors</topic><topic>Transcription initiation</topic><topic>Transcription termination</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Elongation Factors</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svetlov, Vladimir</creatorcontrib><creatorcontrib>Nudler, Evgeny</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svetlov, Vladimir</au><au>Nudler, Evgeny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reading of the non‐template DNA by transcription elongation factors</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2018-08</date><risdate>2018</risdate><volume>109</volume><issue>4</issue><spage>417</spage><epage>421</epage><pages>417-421</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Unlike transcription initiation and termination, which have easily discernable signals, such as promoters and terminators, elongation is regulated through a dynamic network involving RNA/DNA pause signals and states‐rather than sequence‐specific protein interactions. A report by Nedialkov et al. () provides experimental evidence for sequence‐specific recruitment of elongation factor RfaH to transcribing RNA polymerase (RNAP) and outlines the mechanism of gene expression regulation by restraint (‘locking’) of the DNA non‐template strand. According to this model, the elongation complex pauses at the so called ‘operon polarity sequence’ (found in some long bacterial operons coding for virulence genes), when the usually flexible non‐template DNA strand adopts a distinct hairpin‐loop conformation on the surface of transcribing RNAP. Sequence‐specific binding of RfaH to this DNA segment facilitates conversion of RfaH from its inactive closed to its active open conformation. The interaction network formed between RfaH, non‐template DNA and RNAP locks DNA in a conformation that renders RNAP resistant to pausing and termination. The effects of such locking on elongation can be mimicked by restraint of the non‐template strand due to its shortening. This work advances our understanding of transcription regulation and has important implications for the action of general elongation factors, such as NusG, which lack apparent sequence‐specificity, as well as for the mechanisms of other linked processes, such as transcription‐coupled DNA repair.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>29757477</pmid><doi>10.1111/mmi.13984</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1977-4271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2018-08, Vol.109 (4), p.417-421
issn 0950-382X
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6173973
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals
subjects Amino acid sequence
Constraints
Deoxyribonucleic acid
DNA
DNA repair
DNA-directed RNA polymerase
DNA-Directed RNA Polymerases - genetics
Elongation
Escherichia coli Proteins - genetics
Gene expression
Gene regulation
Locks
Nucleotide sequence
Operons
Peptide Elongation Factors - genetics
Polarity
Protein interaction
Proteins
Reading
Ribonucleic acid
RNA
RNA polymerase
Trans-Activators - genetics
Transcription elongation
Transcription factors
Transcription initiation
Transcription termination
Transcription, Genetic
Transcriptional Elongation Factors
Virulence
title Reading of the non‐template DNA by transcription elongation factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reading%20of%20the%20non%E2%80%90template%20DNA%20by%20transcription%20elongation%20factors&rft.jtitle=Molecular%20microbiology&rft.au=Svetlov,%20Vladimir&rft.date=2018-08&rft.volume=109&rft.issue=4&rft.spage=417&rft.epage=421&rft.pages=417-421&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.13984&rft_dat=%3Cproquest_pubme%3E2116560130%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116560130&rft_id=info:pmid/29757477&rfr_iscdi=true