Crystallography on a chip – without the chip: sheet‐on‐sheet sandwich

Crystallography chips are fixed‐target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor‐microfabrication techniques to yield an array of wells or through‐holes in which single microcrystals can be lodged for raster‐scan probing....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2018-10, Vol.74 (10), p.1000-1007
Hauptverfasser: Doak, R. Bruce, Nass Kovacs, Gabriela, Gorel, Alexander, Foucar, Lutz, Barends, Thomas R. M., Grünbein, Marie Luise, Hilpert, Mario, Kloos, Marco, Roome, Christopher M., Shoeman, Robert L., Stricker, Miriam, Tono, Kensuke, You, Daehyun, Ueda, Kiyoshi, Sherrell, Darren A., Owen, Robin L., Schlichting, Ilme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1007
container_issue 10
container_start_page 1000
container_title Acta crystallographica. Section D, Biological crystallography.
container_volume 74
creator Doak, R. Bruce
Nass Kovacs, Gabriela
Gorel, Alexander
Foucar, Lutz
Barends, Thomas R. M.
Grünbein, Marie Luise
Hilpert, Mario
Kloos, Marco
Roome, Christopher M.
Shoeman, Robert L.
Stricker, Miriam
Tono, Kensuke
You, Daehyun
Ueda, Kiyoshi
Sherrell, Darren A.
Owen, Robin L.
Schlichting, Ilme
description Crystallography chips are fixed‐target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor‐microfabrication techniques to yield an array of wells or through‐holes in which single microcrystals can be lodged for raster‐scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high‐throughput sample presentation for serial diffraction data collection at synchrotron or X‐ray free‐electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a `chip‐less' adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet‐on‐sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre‐sized crystals at an XFEL. The approach is also well suited to time‐resolved pump–probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X‐ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated. Fixed targets or chips offer an efficient means of high‐throughput microcrystal delivery for serial measurements at synchrotrons and XFELs. A low‐background Mylar sandwich chip that alleviates the challenges of chip availability and crystal loading is described.
doi_str_mv 10.1107/S2059798318011634
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6173051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116433789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5438-bc3218086697894a14f1cd85042baafff00ba6670565c682da992e16ffd5e1803</originalsourceid><addsrcrecordid>eNqFUUtOwzAUtBCIVoUDsEGRWAfsOHYSFkhV-YpKLCgL2FiO4zSp0jjYCVV2PQISN-xJcD9URSzY-NnzZsaj9wA4QfAcIRhcPHuQREEUYhRChCj290B3CblLbH_n3gHHxkwghJYUIOwfgg6GXhj5CHbB40C3puZFocaaV1nrqNLhjsjyylnMv5xZXmeqqZ06kyvw0jGZlPVi_qlKe6wejuFlMstFdgQOUl4YebypPfByezMa3LvDp7uHQX_oCuLj0I0F9mzmkNIosCk48lMkkpBA34s5T9MUwphTGkBCiaChl_Ao8iSiaZoQaYW4B67WvlUTT2UiZFlrXrBK51OuW6Z4zn53yjxjY_XBKAowJMganG0MtHpvpKnZRDW6tJmZZ0fpY2yDWRZas4RWxmiZbn9AkC1XwP6swGpOd6NtFT8Dt4RoTZjlhWz_d2T912tv9Eagxb4BxSeUCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116433789</pqid></control><display><type>article</type><title>Crystallography on a chip – without the chip: sheet‐on‐sheet sandwich</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Doak, R. Bruce ; Nass Kovacs, Gabriela ; Gorel, Alexander ; Foucar, Lutz ; Barends, Thomas R. M. ; Grünbein, Marie Luise ; Hilpert, Mario ; Kloos, Marco ; Roome, Christopher M. ; Shoeman, Robert L. ; Stricker, Miriam ; Tono, Kensuke ; You, Daehyun ; Ueda, Kiyoshi ; Sherrell, Darren A. ; Owen, Robin L. ; Schlichting, Ilme</creator><creatorcontrib>Doak, R. Bruce ; Nass Kovacs, Gabriela ; Gorel, Alexander ; Foucar, Lutz ; Barends, Thomas R. M. ; Grünbein, Marie Luise ; Hilpert, Mario ; Kloos, Marco ; Roome, Christopher M. ; Shoeman, Robert L. ; Stricker, Miriam ; Tono, Kensuke ; You, Daehyun ; Ueda, Kiyoshi ; Sherrell, Darren A. ; Owen, Robin L. ; Schlichting, Ilme</creatorcontrib><description>Crystallography chips are fixed‐target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor‐microfabrication techniques to yield an array of wells or through‐holes in which single microcrystals can be lodged for raster‐scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high‐throughput sample presentation for serial diffraction data collection at synchrotron or X‐ray free‐electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a `chip‐less' adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet‐on‐sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre‐sized crystals at an XFEL. The approach is also well suited to time‐resolved pump–probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X‐ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated. Fixed targets or chips offer an efficient means of high‐throughput microcrystal delivery for serial measurements at synchrotrons and XFELs. A low‐background Mylar sandwich chip that alleviates the challenges of chip availability and crystal loading is described.</description><identifier>ISSN: 2059-7983</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 2059-7983</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S2059798318011634</identifier><identifier>PMID: 30289410</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Animals ; Carbon Monoxide - chemistry ; Chick Embryo ; Chip formation ; Chips ; Crystal structure ; Crystallography ; Crystallography - instrumentation ; Crystallography - methods ; Crystallography, X-Ray - instrumentation ; Crystallography, X-Ray - methods ; Crystals ; Data Collection ; Desiccation ; Equipment Design ; fixed target ; Hemoglobin A - chemistry ; high throughput ; Humans ; Kapton (trademark) ; low dose ; Mechanical drives ; Microarray Analysis - methods ; Microcrystals ; Muramidase - chemistry ; Mylar ; Mylar sandwich chip ; Oxyhemoglobins - chemistry ; Particle beams ; Polyimide resins ; Polymers ; Raster ; Raster scanning ; Research Papers ; room‐temperature data collection ; Sandwich structures ; Scanning ; Semiconductors ; serial crystallography ; Sheets ; Synchrotron radiation ; Time Factors ; Timing ; XFEL</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2018-10, Vol.74 (10), p.1000-1007</ispartof><rights>Doak et al. 2018</rights><rights>open access.</rights><rights>Copyright Wiley Subscription Services, Inc. Oct 2018</rights><rights>Doak et al. 2018 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5438-bc3218086697894a14f1cd85042baafff00ba6670565c682da992e16ffd5e1803</citedby><cites>FETCH-LOGICAL-c5438-bc3218086697894a14f1cd85042baafff00ba6670565c682da992e16ffd5e1803</cites><orcidid>0000-0002-2104-7057 ; 0000-0002-0936-7496 ; 0000-0003-1218-3759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS2059798318011634$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS2059798318011634$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30289410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Doak, R. Bruce</creatorcontrib><creatorcontrib>Nass Kovacs, Gabriela</creatorcontrib><creatorcontrib>Gorel, Alexander</creatorcontrib><creatorcontrib>Foucar, Lutz</creatorcontrib><creatorcontrib>Barends, Thomas R. M.</creatorcontrib><creatorcontrib>Grünbein, Marie Luise</creatorcontrib><creatorcontrib>Hilpert, Mario</creatorcontrib><creatorcontrib>Kloos, Marco</creatorcontrib><creatorcontrib>Roome, Christopher M.</creatorcontrib><creatorcontrib>Shoeman, Robert L.</creatorcontrib><creatorcontrib>Stricker, Miriam</creatorcontrib><creatorcontrib>Tono, Kensuke</creatorcontrib><creatorcontrib>You, Daehyun</creatorcontrib><creatorcontrib>Ueda, Kiyoshi</creatorcontrib><creatorcontrib>Sherrell, Darren A.</creatorcontrib><creatorcontrib>Owen, Robin L.</creatorcontrib><creatorcontrib>Schlichting, Ilme</creatorcontrib><title>Crystallography on a chip – without the chip: sheet‐on‐sheet sandwich</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Crystallogr D Struct Biol</addtitle><description>Crystallography chips are fixed‐target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor‐microfabrication techniques to yield an array of wells or through‐holes in which single microcrystals can be lodged for raster‐scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high‐throughput sample presentation for serial diffraction data collection at synchrotron or X‐ray free‐electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a `chip‐less' adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet‐on‐sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre‐sized crystals at an XFEL. The approach is also well suited to time‐resolved pump–probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X‐ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated. Fixed targets or chips offer an efficient means of high‐throughput microcrystal delivery for serial measurements at synchrotrons and XFELs. A low‐background Mylar sandwich chip that alleviates the challenges of chip availability and crystal loading is described.</description><subject>Animals</subject><subject>Carbon Monoxide - chemistry</subject><subject>Chick Embryo</subject><subject>Chip formation</subject><subject>Chips</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Crystallography - instrumentation</subject><subject>Crystallography - methods</subject><subject>Crystallography, X-Ray - instrumentation</subject><subject>Crystallography, X-Ray - methods</subject><subject>Crystals</subject><subject>Data Collection</subject><subject>Desiccation</subject><subject>Equipment Design</subject><subject>fixed target</subject><subject>Hemoglobin A - chemistry</subject><subject>high throughput</subject><subject>Humans</subject><subject>Kapton (trademark)</subject><subject>low dose</subject><subject>Mechanical drives</subject><subject>Microarray Analysis - methods</subject><subject>Microcrystals</subject><subject>Muramidase - chemistry</subject><subject>Mylar</subject><subject>Mylar sandwich chip</subject><subject>Oxyhemoglobins - chemistry</subject><subject>Particle beams</subject><subject>Polyimide resins</subject><subject>Polymers</subject><subject>Raster</subject><subject>Raster scanning</subject><subject>Research Papers</subject><subject>room‐temperature data collection</subject><subject>Sandwich structures</subject><subject>Scanning</subject><subject>Semiconductors</subject><subject>serial crystallography</subject><subject>Sheets</subject><subject>Synchrotron radiation</subject><subject>Time Factors</subject><subject>Timing</subject><subject>XFEL</subject><issn>2059-7983</issn><issn>0907-4449</issn><issn>2059-7983</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFUUtOwzAUtBCIVoUDsEGRWAfsOHYSFkhV-YpKLCgL2FiO4zSp0jjYCVV2PQISN-xJcD9URSzY-NnzZsaj9wA4QfAcIRhcPHuQREEUYhRChCj290B3CblLbH_n3gHHxkwghJYUIOwfgg6GXhj5CHbB40C3puZFocaaV1nrqNLhjsjyylnMv5xZXmeqqZ06kyvw0jGZlPVi_qlKe6wejuFlMstFdgQOUl4YebypPfByezMa3LvDp7uHQX_oCuLj0I0F9mzmkNIosCk48lMkkpBA34s5T9MUwphTGkBCiaChl_Ao8iSiaZoQaYW4B67WvlUTT2UiZFlrXrBK51OuW6Z4zn53yjxjY_XBKAowJMganG0MtHpvpKnZRDW6tJmZZ0fpY2yDWRZas4RWxmiZbn9AkC1XwP6swGpOd6NtFT8Dt4RoTZjlhWz_d2T912tv9Eagxb4BxSeUCg</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Doak, R. Bruce</creator><creator>Nass Kovacs, Gabriela</creator><creator>Gorel, Alexander</creator><creator>Foucar, Lutz</creator><creator>Barends, Thomas R. M.</creator><creator>Grünbein, Marie Luise</creator><creator>Hilpert, Mario</creator><creator>Kloos, Marco</creator><creator>Roome, Christopher M.</creator><creator>Shoeman, Robert L.</creator><creator>Stricker, Miriam</creator><creator>Tono, Kensuke</creator><creator>You, Daehyun</creator><creator>Ueda, Kiyoshi</creator><creator>Sherrell, Darren A.</creator><creator>Owen, Robin L.</creator><creator>Schlichting, Ilme</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SP</scope><scope>7SR</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2104-7057</orcidid><orcidid>https://orcid.org/0000-0002-0936-7496</orcidid><orcidid>https://orcid.org/0000-0003-1218-3759</orcidid></search><sort><creationdate>201810</creationdate><title>Crystallography on a chip – without the chip: sheet‐on‐sheet sandwich</title><author>Doak, R. Bruce ; Nass Kovacs, Gabriela ; Gorel, Alexander ; Foucar, Lutz ; Barends, Thomas R. M. ; Grünbein, Marie Luise ; Hilpert, Mario ; Kloos, Marco ; Roome, Christopher M. ; Shoeman, Robert L. ; Stricker, Miriam ; Tono, Kensuke ; You, Daehyun ; Ueda, Kiyoshi ; Sherrell, Darren A. ; Owen, Robin L. ; Schlichting, Ilme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5438-bc3218086697894a14f1cd85042baafff00ba6670565c682da992e16ffd5e1803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Carbon Monoxide - chemistry</topic><topic>Chick Embryo</topic><topic>Chip formation</topic><topic>Chips</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Crystallography - instrumentation</topic><topic>Crystallography - methods</topic><topic>Crystallography, X-Ray - instrumentation</topic><topic>Crystallography, X-Ray - methods</topic><topic>Crystals</topic><topic>Data Collection</topic><topic>Desiccation</topic><topic>Equipment Design</topic><topic>fixed target</topic><topic>Hemoglobin A - chemistry</topic><topic>high throughput</topic><topic>Humans</topic><topic>Kapton (trademark)</topic><topic>low dose</topic><topic>Mechanical drives</topic><topic>Microarray Analysis - methods</topic><topic>Microcrystals</topic><topic>Muramidase - chemistry</topic><topic>Mylar</topic><topic>Mylar sandwich chip</topic><topic>Oxyhemoglobins - chemistry</topic><topic>Particle beams</topic><topic>Polyimide resins</topic><topic>Polymers</topic><topic>Raster</topic><topic>Raster scanning</topic><topic>Research Papers</topic><topic>room‐temperature data collection</topic><topic>Sandwich structures</topic><topic>Scanning</topic><topic>Semiconductors</topic><topic>serial crystallography</topic><topic>Sheets</topic><topic>Synchrotron radiation</topic><topic>Time Factors</topic><topic>Timing</topic><topic>XFEL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doak, R. Bruce</creatorcontrib><creatorcontrib>Nass Kovacs, Gabriela</creatorcontrib><creatorcontrib>Gorel, Alexander</creatorcontrib><creatorcontrib>Foucar, Lutz</creatorcontrib><creatorcontrib>Barends, Thomas R. M.</creatorcontrib><creatorcontrib>Grünbein, Marie Luise</creatorcontrib><creatorcontrib>Hilpert, Mario</creatorcontrib><creatorcontrib>Kloos, Marco</creatorcontrib><creatorcontrib>Roome, Christopher M.</creatorcontrib><creatorcontrib>Shoeman, Robert L.</creatorcontrib><creatorcontrib>Stricker, Miriam</creatorcontrib><creatorcontrib>Tono, Kensuke</creatorcontrib><creatorcontrib>You, Daehyun</creatorcontrib><creatorcontrib>Ueda, Kiyoshi</creatorcontrib><creatorcontrib>Sherrell, Darren A.</creatorcontrib><creatorcontrib>Owen, Robin L.</creatorcontrib><creatorcontrib>Schlichting, Ilme</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doak, R. Bruce</au><au>Nass Kovacs, Gabriela</au><au>Gorel, Alexander</au><au>Foucar, Lutz</au><au>Barends, Thomas R. M.</au><au>Grünbein, Marie Luise</au><au>Hilpert, Mario</au><au>Kloos, Marco</au><au>Roome, Christopher M.</au><au>Shoeman, Robert L.</au><au>Stricker, Miriam</au><au>Tono, Kensuke</au><au>You, Daehyun</au><au>Ueda, Kiyoshi</au><au>Sherrell, Darren A.</au><au>Owen, Robin L.</au><au>Schlichting, Ilme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallography on a chip – without the chip: sheet‐on‐sheet sandwich</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Crystallogr D Struct Biol</addtitle><date>2018-10</date><risdate>2018</risdate><volume>74</volume><issue>10</issue><spage>1000</spage><epage>1007</epage><pages>1000-1007</pages><issn>2059-7983</issn><issn>0907-4449</issn><eissn>2059-7983</eissn><eissn>1399-0047</eissn><abstract>Crystallography chips are fixed‐target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor‐microfabrication techniques to yield an array of wells or through‐holes in which single microcrystals can be lodged for raster‐scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high‐throughput sample presentation for serial diffraction data collection at synchrotron or X‐ray free‐electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a `chip‐less' adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet‐on‐sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre‐sized crystals at an XFEL. The approach is also well suited to time‐resolved pump–probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X‐ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated. Fixed targets or chips offer an efficient means of high‐throughput microcrystal delivery for serial measurements at synchrotrons and XFELs. A low‐background Mylar sandwich chip that alleviates the challenges of chip availability and crystal loading is described.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>30289410</pmid><doi>10.1107/S2059798318011634</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2104-7057</orcidid><orcidid>https://orcid.org/0000-0002-0936-7496</orcidid><orcidid>https://orcid.org/0000-0003-1218-3759</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2059-7983
ispartof Acta crystallographica. Section D, Biological crystallography., 2018-10, Vol.74 (10), p.1000-1007
issn 2059-7983
0907-4449
2059-7983
1399-0047
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6173051
source MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection
subjects Animals
Carbon Monoxide - chemistry
Chick Embryo
Chip formation
Chips
Crystal structure
Crystallography
Crystallography - instrumentation
Crystallography - methods
Crystallography, X-Ray - instrumentation
Crystallography, X-Ray - methods
Crystals
Data Collection
Desiccation
Equipment Design
fixed target
Hemoglobin A - chemistry
high throughput
Humans
Kapton (trademark)
low dose
Mechanical drives
Microarray Analysis - methods
Microcrystals
Muramidase - chemistry
Mylar
Mylar sandwich chip
Oxyhemoglobins - chemistry
Particle beams
Polyimide resins
Polymers
Raster
Raster scanning
Research Papers
room‐temperature data collection
Sandwich structures
Scanning
Semiconductors
serial crystallography
Sheets
Synchrotron radiation
Time Factors
Timing
XFEL
title Crystallography on a chip – without the chip: sheet‐on‐sheet sandwich
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallography%20on%20a%20chip%20%E2%80%93%20without%20the%20chip:%20sheet%E2%80%90on%E2%80%90sheet%20sandwich&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Doak,%20R.%20Bruce&rft.date=2018-10&rft.volume=74&rft.issue=10&rft.spage=1000&rft.epage=1007&rft.pages=1000-1007&rft.issn=2059-7983&rft.eissn=2059-7983&rft_id=info:doi/10.1107/S2059798318011634&rft_dat=%3Cproquest_pubme%3E2116433789%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116433789&rft_id=info:pmid/30289410&rfr_iscdi=true