Crystallography on a chip – without the chip: sheet‐on‐sheet sandwich
Crystallography chips are fixed‐target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor‐microfabrication techniques to yield an array of wells or through‐holes in which single microcrystals can be lodged for raster‐scan probing....
Gespeichert in:
Veröffentlicht in: | Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2018-10, Vol.74 (10), p.1000-1007 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1007 |
---|---|
container_issue | 10 |
container_start_page | 1000 |
container_title | Acta crystallographica. Section D, Biological crystallography. |
container_volume | 74 |
creator | Doak, R. Bruce Nass Kovacs, Gabriela Gorel, Alexander Foucar, Lutz Barends, Thomas R. M. Grünbein, Marie Luise Hilpert, Mario Kloos, Marco Roome, Christopher M. Shoeman, Robert L. Stricker, Miriam Tono, Kensuke You, Daehyun Ueda, Kiyoshi Sherrell, Darren A. Owen, Robin L. Schlichting, Ilme |
description | Crystallography chips are fixed‐target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor‐microfabrication techniques to yield an array of wells or through‐holes in which single microcrystals can be lodged for raster‐scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high‐throughput sample presentation for serial diffraction data collection at synchrotron or X‐ray free‐electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a `chip‐less' adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet‐on‐sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre‐sized crystals at an XFEL. The approach is also well suited to time‐resolved pump–probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X‐ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated.
Fixed targets or chips offer an efficient means of high‐throughput microcrystal delivery for serial measurements at synchrotrons and XFELs. A low‐background Mylar sandwich chip that alleviates the challenges of chip availability and crystal loading is described. |
doi_str_mv | 10.1107/S2059798318011634 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6173051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116433789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5438-bc3218086697894a14f1cd85042baafff00ba6670565c682da992e16ffd5e1803</originalsourceid><addsrcrecordid>eNqFUUtOwzAUtBCIVoUDsEGRWAfsOHYSFkhV-YpKLCgL2FiO4zSp0jjYCVV2PQISN-xJcD9URSzY-NnzZsaj9wA4QfAcIRhcPHuQREEUYhRChCj290B3CblLbH_n3gHHxkwghJYUIOwfgg6GXhj5CHbB40C3puZFocaaV1nrqNLhjsjyylnMv5xZXmeqqZ06kyvw0jGZlPVi_qlKe6wejuFlMstFdgQOUl4YebypPfByezMa3LvDp7uHQX_oCuLj0I0F9mzmkNIosCk48lMkkpBA34s5T9MUwphTGkBCiaChl_Ao8iSiaZoQaYW4B67WvlUTT2UiZFlrXrBK51OuW6Z4zn53yjxjY_XBKAowJMganG0MtHpvpKnZRDW6tJmZZ0fpY2yDWRZas4RWxmiZbn9AkC1XwP6swGpOd6NtFT8Dt4RoTZjlhWz_d2T912tv9Eagxb4BxSeUCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116433789</pqid></control><display><type>article</type><title>Crystallography on a chip – without the chip: sheet‐on‐sheet sandwich</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Doak, R. Bruce ; Nass Kovacs, Gabriela ; Gorel, Alexander ; Foucar, Lutz ; Barends, Thomas R. M. ; Grünbein, Marie Luise ; Hilpert, Mario ; Kloos, Marco ; Roome, Christopher M. ; Shoeman, Robert L. ; Stricker, Miriam ; Tono, Kensuke ; You, Daehyun ; Ueda, Kiyoshi ; Sherrell, Darren A. ; Owen, Robin L. ; Schlichting, Ilme</creator><creatorcontrib>Doak, R. Bruce ; Nass Kovacs, Gabriela ; Gorel, Alexander ; Foucar, Lutz ; Barends, Thomas R. M. ; Grünbein, Marie Luise ; Hilpert, Mario ; Kloos, Marco ; Roome, Christopher M. ; Shoeman, Robert L. ; Stricker, Miriam ; Tono, Kensuke ; You, Daehyun ; Ueda, Kiyoshi ; Sherrell, Darren A. ; Owen, Robin L. ; Schlichting, Ilme</creatorcontrib><description>Crystallography chips are fixed‐target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor‐microfabrication techniques to yield an array of wells or through‐holes in which single microcrystals can be lodged for raster‐scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high‐throughput sample presentation for serial diffraction data collection at synchrotron or X‐ray free‐electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a `chip‐less' adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet‐on‐sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre‐sized crystals at an XFEL. The approach is also well suited to time‐resolved pump–probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X‐ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated.
Fixed targets or chips offer an efficient means of high‐throughput microcrystal delivery for serial measurements at synchrotrons and XFELs. A low‐background Mylar sandwich chip that alleviates the challenges of chip availability and crystal loading is described.</description><identifier>ISSN: 2059-7983</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 2059-7983</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S2059798318011634</identifier><identifier>PMID: 30289410</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Animals ; Carbon Monoxide - chemistry ; Chick Embryo ; Chip formation ; Chips ; Crystal structure ; Crystallography ; Crystallography - instrumentation ; Crystallography - methods ; Crystallography, X-Ray - instrumentation ; Crystallography, X-Ray - methods ; Crystals ; Data Collection ; Desiccation ; Equipment Design ; fixed target ; Hemoglobin A - chemistry ; high throughput ; Humans ; Kapton (trademark) ; low dose ; Mechanical drives ; Microarray Analysis - methods ; Microcrystals ; Muramidase - chemistry ; Mylar ; Mylar sandwich chip ; Oxyhemoglobins - chemistry ; Particle beams ; Polyimide resins ; Polymers ; Raster ; Raster scanning ; Research Papers ; room‐temperature data collection ; Sandwich structures ; Scanning ; Semiconductors ; serial crystallography ; Sheets ; Synchrotron radiation ; Time Factors ; Timing ; XFEL</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2018-10, Vol.74 (10), p.1000-1007</ispartof><rights>Doak et al. 2018</rights><rights>open access.</rights><rights>Copyright Wiley Subscription Services, Inc. Oct 2018</rights><rights>Doak et al. 2018 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5438-bc3218086697894a14f1cd85042baafff00ba6670565c682da992e16ffd5e1803</citedby><cites>FETCH-LOGICAL-c5438-bc3218086697894a14f1cd85042baafff00ba6670565c682da992e16ffd5e1803</cites><orcidid>0000-0002-2104-7057 ; 0000-0002-0936-7496 ; 0000-0003-1218-3759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS2059798318011634$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS2059798318011634$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30289410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Doak, R. Bruce</creatorcontrib><creatorcontrib>Nass Kovacs, Gabriela</creatorcontrib><creatorcontrib>Gorel, Alexander</creatorcontrib><creatorcontrib>Foucar, Lutz</creatorcontrib><creatorcontrib>Barends, Thomas R. M.</creatorcontrib><creatorcontrib>Grünbein, Marie Luise</creatorcontrib><creatorcontrib>Hilpert, Mario</creatorcontrib><creatorcontrib>Kloos, Marco</creatorcontrib><creatorcontrib>Roome, Christopher M.</creatorcontrib><creatorcontrib>Shoeman, Robert L.</creatorcontrib><creatorcontrib>Stricker, Miriam</creatorcontrib><creatorcontrib>Tono, Kensuke</creatorcontrib><creatorcontrib>You, Daehyun</creatorcontrib><creatorcontrib>Ueda, Kiyoshi</creatorcontrib><creatorcontrib>Sherrell, Darren A.</creatorcontrib><creatorcontrib>Owen, Robin L.</creatorcontrib><creatorcontrib>Schlichting, Ilme</creatorcontrib><title>Crystallography on a chip – without the chip: sheet‐on‐sheet sandwich</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Crystallogr D Struct Biol</addtitle><description>Crystallography chips are fixed‐target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor‐microfabrication techniques to yield an array of wells or through‐holes in which single microcrystals can be lodged for raster‐scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high‐throughput sample presentation for serial diffraction data collection at synchrotron or X‐ray free‐electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a `chip‐less' adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet‐on‐sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre‐sized crystals at an XFEL. The approach is also well suited to time‐resolved pump–probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X‐ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated.
Fixed targets or chips offer an efficient means of high‐throughput microcrystal delivery for serial measurements at synchrotrons and XFELs. A low‐background Mylar sandwich chip that alleviates the challenges of chip availability and crystal loading is described.</description><subject>Animals</subject><subject>Carbon Monoxide - chemistry</subject><subject>Chick Embryo</subject><subject>Chip formation</subject><subject>Chips</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Crystallography - instrumentation</subject><subject>Crystallography - methods</subject><subject>Crystallography, X-Ray - instrumentation</subject><subject>Crystallography, X-Ray - methods</subject><subject>Crystals</subject><subject>Data Collection</subject><subject>Desiccation</subject><subject>Equipment Design</subject><subject>fixed target</subject><subject>Hemoglobin A - chemistry</subject><subject>high throughput</subject><subject>Humans</subject><subject>Kapton (trademark)</subject><subject>low dose</subject><subject>Mechanical drives</subject><subject>Microarray Analysis - methods</subject><subject>Microcrystals</subject><subject>Muramidase - chemistry</subject><subject>Mylar</subject><subject>Mylar sandwich chip</subject><subject>Oxyhemoglobins - chemistry</subject><subject>Particle beams</subject><subject>Polyimide resins</subject><subject>Polymers</subject><subject>Raster</subject><subject>Raster scanning</subject><subject>Research Papers</subject><subject>room‐temperature data collection</subject><subject>Sandwich structures</subject><subject>Scanning</subject><subject>Semiconductors</subject><subject>serial crystallography</subject><subject>Sheets</subject><subject>Synchrotron radiation</subject><subject>Time Factors</subject><subject>Timing</subject><subject>XFEL</subject><issn>2059-7983</issn><issn>0907-4449</issn><issn>2059-7983</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFUUtOwzAUtBCIVoUDsEGRWAfsOHYSFkhV-YpKLCgL2FiO4zSp0jjYCVV2PQISN-xJcD9URSzY-NnzZsaj9wA4QfAcIRhcPHuQREEUYhRChCj290B3CblLbH_n3gHHxkwghJYUIOwfgg6GXhj5CHbB40C3puZFocaaV1nrqNLhjsjyylnMv5xZXmeqqZ06kyvw0jGZlPVi_qlKe6wejuFlMstFdgQOUl4YebypPfByezMa3LvDp7uHQX_oCuLj0I0F9mzmkNIosCk48lMkkpBA34s5T9MUwphTGkBCiaChl_Ao8iSiaZoQaYW4B67WvlUTT2UiZFlrXrBK51OuW6Z4zn53yjxjY_XBKAowJMganG0MtHpvpKnZRDW6tJmZZ0fpY2yDWRZas4RWxmiZbn9AkC1XwP6swGpOd6NtFT8Dt4RoTZjlhWz_d2T912tv9Eagxb4BxSeUCg</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Doak, R. Bruce</creator><creator>Nass Kovacs, Gabriela</creator><creator>Gorel, Alexander</creator><creator>Foucar, Lutz</creator><creator>Barends, Thomas R. M.</creator><creator>Grünbein, Marie Luise</creator><creator>Hilpert, Mario</creator><creator>Kloos, Marco</creator><creator>Roome, Christopher M.</creator><creator>Shoeman, Robert L.</creator><creator>Stricker, Miriam</creator><creator>Tono, Kensuke</creator><creator>You, Daehyun</creator><creator>Ueda, Kiyoshi</creator><creator>Sherrell, Darren A.</creator><creator>Owen, Robin L.</creator><creator>Schlichting, Ilme</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SP</scope><scope>7SR</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2104-7057</orcidid><orcidid>https://orcid.org/0000-0002-0936-7496</orcidid><orcidid>https://orcid.org/0000-0003-1218-3759</orcidid></search><sort><creationdate>201810</creationdate><title>Crystallography on a chip – without the chip: sheet‐on‐sheet sandwich</title><author>Doak, R. Bruce ; Nass Kovacs, Gabriela ; Gorel, Alexander ; Foucar, Lutz ; Barends, Thomas R. M. ; Grünbein, Marie Luise ; Hilpert, Mario ; Kloos, Marco ; Roome, Christopher M. ; Shoeman, Robert L. ; Stricker, Miriam ; Tono, Kensuke ; You, Daehyun ; Ueda, Kiyoshi ; Sherrell, Darren A. ; Owen, Robin L. ; Schlichting, Ilme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5438-bc3218086697894a14f1cd85042baafff00ba6670565c682da992e16ffd5e1803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Carbon Monoxide - chemistry</topic><topic>Chick Embryo</topic><topic>Chip formation</topic><topic>Chips</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Crystallography - instrumentation</topic><topic>Crystallography - methods</topic><topic>Crystallography, X-Ray - instrumentation</topic><topic>Crystallography, X-Ray - methods</topic><topic>Crystals</topic><topic>Data Collection</topic><topic>Desiccation</topic><topic>Equipment Design</topic><topic>fixed target</topic><topic>Hemoglobin A - chemistry</topic><topic>high throughput</topic><topic>Humans</topic><topic>Kapton (trademark)</topic><topic>low dose</topic><topic>Mechanical drives</topic><topic>Microarray Analysis - methods</topic><topic>Microcrystals</topic><topic>Muramidase - chemistry</topic><topic>Mylar</topic><topic>Mylar sandwich chip</topic><topic>Oxyhemoglobins - chemistry</topic><topic>Particle beams</topic><topic>Polyimide resins</topic><topic>Polymers</topic><topic>Raster</topic><topic>Raster scanning</topic><topic>Research Papers</topic><topic>room‐temperature data collection</topic><topic>Sandwich structures</topic><topic>Scanning</topic><topic>Semiconductors</topic><topic>serial crystallography</topic><topic>Sheets</topic><topic>Synchrotron radiation</topic><topic>Time Factors</topic><topic>Timing</topic><topic>XFEL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doak, R. Bruce</creatorcontrib><creatorcontrib>Nass Kovacs, Gabriela</creatorcontrib><creatorcontrib>Gorel, Alexander</creatorcontrib><creatorcontrib>Foucar, Lutz</creatorcontrib><creatorcontrib>Barends, Thomas R. M.</creatorcontrib><creatorcontrib>Grünbein, Marie Luise</creatorcontrib><creatorcontrib>Hilpert, Mario</creatorcontrib><creatorcontrib>Kloos, Marco</creatorcontrib><creatorcontrib>Roome, Christopher M.</creatorcontrib><creatorcontrib>Shoeman, Robert L.</creatorcontrib><creatorcontrib>Stricker, Miriam</creatorcontrib><creatorcontrib>Tono, Kensuke</creatorcontrib><creatorcontrib>You, Daehyun</creatorcontrib><creatorcontrib>Ueda, Kiyoshi</creatorcontrib><creatorcontrib>Sherrell, Darren A.</creatorcontrib><creatorcontrib>Owen, Robin L.</creatorcontrib><creatorcontrib>Schlichting, Ilme</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doak, R. Bruce</au><au>Nass Kovacs, Gabriela</au><au>Gorel, Alexander</au><au>Foucar, Lutz</au><au>Barends, Thomas R. M.</au><au>Grünbein, Marie Luise</au><au>Hilpert, Mario</au><au>Kloos, Marco</au><au>Roome, Christopher M.</au><au>Shoeman, Robert L.</au><au>Stricker, Miriam</au><au>Tono, Kensuke</au><au>You, Daehyun</au><au>Ueda, Kiyoshi</au><au>Sherrell, Darren A.</au><au>Owen, Robin L.</au><au>Schlichting, Ilme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallography on a chip – without the chip: sheet‐on‐sheet sandwich</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Crystallogr D Struct Biol</addtitle><date>2018-10</date><risdate>2018</risdate><volume>74</volume><issue>10</issue><spage>1000</spage><epage>1007</epage><pages>1000-1007</pages><issn>2059-7983</issn><issn>0907-4449</issn><eissn>2059-7983</eissn><eissn>1399-0047</eissn><abstract>Crystallography chips are fixed‐target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor‐microfabrication techniques to yield an array of wells or through‐holes in which single microcrystals can be lodged for raster‐scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high‐throughput sample presentation for serial diffraction data collection at synchrotron or X‐ray free‐electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a `chip‐less' adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet‐on‐sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre‐sized crystals at an XFEL. The approach is also well suited to time‐resolved pump–probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X‐ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated.
Fixed targets or chips offer an efficient means of high‐throughput microcrystal delivery for serial measurements at synchrotrons and XFELs. A low‐background Mylar sandwich chip that alleviates the challenges of chip availability and crystal loading is described.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>30289410</pmid><doi>10.1107/S2059798318011634</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2104-7057</orcidid><orcidid>https://orcid.org/0000-0002-0936-7496</orcidid><orcidid>https://orcid.org/0000-0003-1218-3759</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2059-7983 |
ispartof | Acta crystallographica. Section D, Biological crystallography., 2018-10, Vol.74 (10), p.1000-1007 |
issn | 2059-7983 0907-4449 2059-7983 1399-0047 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6173051 |
source | MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | Animals Carbon Monoxide - chemistry Chick Embryo Chip formation Chips Crystal structure Crystallography Crystallography - instrumentation Crystallography - methods Crystallography, X-Ray - instrumentation Crystallography, X-Ray - methods Crystals Data Collection Desiccation Equipment Design fixed target Hemoglobin A - chemistry high throughput Humans Kapton (trademark) low dose Mechanical drives Microarray Analysis - methods Microcrystals Muramidase - chemistry Mylar Mylar sandwich chip Oxyhemoglobins - chemistry Particle beams Polyimide resins Polymers Raster Raster scanning Research Papers room‐temperature data collection Sandwich structures Scanning Semiconductors serial crystallography Sheets Synchrotron radiation Time Factors Timing XFEL |
title | Crystallography on a chip – without the chip: sheet‐on‐sheet sandwich |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallography%20on%20a%20chip%20%E2%80%93%20without%20the%20chip:%20sheet%E2%80%90on%E2%80%90sheet%20sandwich&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Doak,%20R.%20Bruce&rft.date=2018-10&rft.volume=74&rft.issue=10&rft.spage=1000&rft.epage=1007&rft.pages=1000-1007&rft.issn=2059-7983&rft.eissn=2059-7983&rft_id=info:doi/10.1107/S2059798318011634&rft_dat=%3Cproquest_pubme%3E2116433789%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116433789&rft_id=info:pmid/30289410&rfr_iscdi=true |