Deletion of poly(ADP‑ribose) polymerase-1 changes the composition of the microbiome in the gut

Poly(adenosine diphosphate‑ribose) polymerase (PARP)‑1 is the prototypical PARP enzyme well known for its role in DNA repair and as a pro‑inflammatory protein. Since PARP1 is an important co‑factor of several other pro‑inflammatory proteins, in the present study the possible changes in microbial flo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular medicine reports 2018-11, Vol.18 (5), p.4335-4341
Hauptverfasser: Vida, András, Kardos, Gábor, Kovács, Tünde, Bodrogi, Balázs L, Bai, Péter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4341
container_issue 5
container_start_page 4335
container_title Molecular medicine reports
container_volume 18
creator Vida, András
Kardos, Gábor
Kovács, Tünde
Bodrogi, Balázs L
Bai, Péter
description Poly(adenosine diphosphate‑ribose) polymerase (PARP)‑1 is the prototypical PARP enzyme well known for its role in DNA repair and as a pro‑inflammatory protein. Since PARP1 is an important co‑factor of several other pro‑inflammatory proteins, in the present study the possible changes in microbial flora of PARP1 knockout mice were investigated. Samples from the duodenum, cecum and feces from wild type and PARP1 knockout C57BL/6J male mice were collected and 16S ribosomal RNA genes were sequenced. Based on the sequencing results, the microbiome and compared samples throughout the lower part of the gastrointestinal system were reconstructed. The present results demonstrated that the lack of PARP1 enzyme only disturbed the microbial flora of the duodenum, where the biodiversity increased in the knockout animals on the species level but decreased on the order level. The most prominent change was the overwhelming abundance of the family Porphyromonadaceae in the duodenum of PARP1‑/‑ animals, which disappeared in the cecum and feces where families were spread out more evenly than in the wild type animals. The findings of the present study may improve current understanding of the role of PARP1 in chronic inflammatory diseases.
doi_str_mv 10.3892/mmr.2018.9474
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6172391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A559686447</galeid><sourcerecordid>A559686447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-af63e54c4f82d7c51053acbd522017ff51459ebd8234f37b6d98fc9f8ee6b3fd3</originalsourceid><addsrcrecordid>eNptkstu1DAUhiMEoqWwZIsisSmLDL5fNkijtlykSrCAtXGc4xlXSTzYSaXueAVesU-C004LRcgLW7-_8x-do7-qXmK0okqTt8OQVgRhtdJMskfVIZYaNxQh9nj_JlrLg-pZzhcICU64flodUEQIlpQeVt9PoYcpxLGOvt7F_up4ffrl-uevFNqY4c2NNECyGRpcu60dN5DraQu1i8Mu5nBXukhDcCm2IQ5Qh_FG2czT8-qJt32GF_v7qPr2_uzrycfm_POHTyfr88YxRabGekGBM8e8Ip10HCNOrWs7Tspw0nuOGdfQdopQ5qlsRaeVd9orANFS39Gj6t2t725uB-gcjFOyvdmlMNh0ZaIN5uHPGLZmEy-NwJJQjYvB8d4gxR8z5MkMITvoeztCnLMhGCnCGcG6oK__QS_inMYyXqGwkAoLLP5QG9uDCaOPpa9bTM2acy2UYEwWavUfqpwOyj7jCD4U_UFBc1tQlp1zAn8_I0ZmiYQpkTBLJMwSicK_-nsx9_RdBuhv7xqycw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116781616</pqid></control><display><type>article</type><title>Deletion of poly(ADP‑ribose) polymerase-1 changes the composition of the microbiome in the gut</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Vida, András ; Kardos, Gábor ; Kovács, Tünde ; Bodrogi, Balázs L ; Bai, Péter</creator><creatorcontrib>Vida, András ; Kardos, Gábor ; Kovács, Tünde ; Bodrogi, Balázs L ; Bai, Péter</creatorcontrib><description>Poly(adenosine diphosphate‑ribose) polymerase (PARP)‑1 is the prototypical PARP enzyme well known for its role in DNA repair and as a pro‑inflammatory protein. Since PARP1 is an important co‑factor of several other pro‑inflammatory proteins, in the present study the possible changes in microbial flora of PARP1 knockout mice were investigated. Samples from the duodenum, cecum and feces from wild type and PARP1 knockout C57BL/6J male mice were collected and 16S ribosomal RNA genes were sequenced. Based on the sequencing results, the microbiome and compared samples throughout the lower part of the gastrointestinal system were reconstructed. The present results demonstrated that the lack of PARP1 enzyme only disturbed the microbial flora of the duodenum, where the biodiversity increased in the knockout animals on the species level but decreased on the order level. The most prominent change was the overwhelming abundance of the family Porphyromonadaceae in the duodenum of PARP1‑/‑ animals, which disappeared in the cecum and feces where families were spread out more evenly than in the wild type animals. The findings of the present study may improve current understanding of the role of PARP1 in chronic inflammatory diseases.</description><identifier>ISSN: 1791-2997</identifier><identifier>EISSN: 1791-3004</identifier><identifier>DOI: 10.3892/mmr.2018.9474</identifier><identifier>PMID: 30221733</identifier><language>eng</language><publisher>Greece: Spandidos Publications</publisher><subject>Adenosine ; Adenosine diphosphate ; Animals ; Biodiversity ; Cecum ; Deoxyribonucleic acid ; Diabetes ; Diarrhea ; DNA ; DNA polymerases ; DNA repair ; Duodenum ; Feces ; Gastrointestinal Microbiome ; Genetic aspects ; Genetic Association Studies ; Genotype ; Health aspects ; Host-bacteria relationships ; Host-Pathogen Interactions ; Immune system ; Inflammatory diseases ; Metabolic disorders ; Metabolites ; Mice ; Mice, Knockout ; Microbiomes ; Microbiota (Symbiotic organisms) ; Poly (ADP-Ribose) Polymerase-1 - deficiency ; Poly(ADP-ribose) ; Poly(ADP-ribose) polymerase ; Poly(ADP-ribose) Polymerase 1 ; Proteins ; Ribose ; Ribosomal DNA ; Rodents ; rRNA 16S ; Transcription factors</subject><ispartof>Molecular medicine reports, 2018-11, Vol.18 (5), p.4335-4341</ispartof><rights>COPYRIGHT 2018 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2018</rights><rights>Copyright: © Vida et al. 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-af63e54c4f82d7c51053acbd522017ff51459ebd8234f37b6d98fc9f8ee6b3fd3</citedby><cites>FETCH-LOGICAL-c482t-af63e54c4f82d7c51053acbd522017ff51459ebd8234f37b6d98fc9f8ee6b3fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30221733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vida, András</creatorcontrib><creatorcontrib>Kardos, Gábor</creatorcontrib><creatorcontrib>Kovács, Tünde</creatorcontrib><creatorcontrib>Bodrogi, Balázs L</creatorcontrib><creatorcontrib>Bai, Péter</creatorcontrib><title>Deletion of poly(ADP‑ribose) polymerase-1 changes the composition of the microbiome in the gut</title><title>Molecular medicine reports</title><addtitle>Mol Med Rep</addtitle><description>Poly(adenosine diphosphate‑ribose) polymerase (PARP)‑1 is the prototypical PARP enzyme well known for its role in DNA repair and as a pro‑inflammatory protein. Since PARP1 is an important co‑factor of several other pro‑inflammatory proteins, in the present study the possible changes in microbial flora of PARP1 knockout mice were investigated. Samples from the duodenum, cecum and feces from wild type and PARP1 knockout C57BL/6J male mice were collected and 16S ribosomal RNA genes were sequenced. Based on the sequencing results, the microbiome and compared samples throughout the lower part of the gastrointestinal system were reconstructed. The present results demonstrated that the lack of PARP1 enzyme only disturbed the microbial flora of the duodenum, where the biodiversity increased in the knockout animals on the species level but decreased on the order level. The most prominent change was the overwhelming abundance of the family Porphyromonadaceae in the duodenum of PARP1‑/‑ animals, which disappeared in the cecum and feces where families were spread out more evenly than in the wild type animals. The findings of the present study may improve current understanding of the role of PARP1 in chronic inflammatory diseases.</description><subject>Adenosine</subject><subject>Adenosine diphosphate</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>Cecum</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetes</subject><subject>Diarrhea</subject><subject>DNA</subject><subject>DNA polymerases</subject><subject>DNA repair</subject><subject>Duodenum</subject><subject>Feces</subject><subject>Gastrointestinal Microbiome</subject><subject>Genetic aspects</subject><subject>Genetic Association Studies</subject><subject>Genotype</subject><subject>Health aspects</subject><subject>Host-bacteria relationships</subject><subject>Host-Pathogen Interactions</subject><subject>Immune system</subject><subject>Inflammatory diseases</subject><subject>Metabolic disorders</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microbiomes</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Poly (ADP-Ribose) Polymerase-1 - deficiency</subject><subject>Poly(ADP-ribose)</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Poly(ADP-ribose) Polymerase 1</subject><subject>Proteins</subject><subject>Ribose</subject><subject>Ribosomal DNA</subject><subject>Rodents</subject><subject>rRNA 16S</subject><subject>Transcription factors</subject><issn>1791-2997</issn><issn>1791-3004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkstu1DAUhiMEoqWwZIsisSmLDL5fNkijtlykSrCAtXGc4xlXSTzYSaXueAVesU-C004LRcgLW7-_8x-do7-qXmK0okqTt8OQVgRhtdJMskfVIZYaNxQh9nj_JlrLg-pZzhcICU64flodUEQIlpQeVt9PoYcpxLGOvt7F_up4ffrl-uevFNqY4c2NNECyGRpcu60dN5DraQu1i8Mu5nBXukhDcCm2IQ5Qh_FG2czT8-qJt32GF_v7qPr2_uzrycfm_POHTyfr88YxRabGekGBM8e8Ip10HCNOrWs7Tspw0nuOGdfQdopQ5qlsRaeVd9orANFS39Gj6t2t725uB-gcjFOyvdmlMNh0ZaIN5uHPGLZmEy-NwJJQjYvB8d4gxR8z5MkMITvoeztCnLMhGCnCGcG6oK__QS_inMYyXqGwkAoLLP5QG9uDCaOPpa9bTM2acy2UYEwWavUfqpwOyj7jCD4U_UFBc1tQlp1zAn8_I0ZmiYQpkTBLJMwSicK_-nsx9_RdBuhv7xqycw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Vida, András</creator><creator>Kardos, Gábor</creator><creator>Kovács, Tünde</creator><creator>Bodrogi, Balázs L</creator><creator>Bai, Péter</creator><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><general>D.A. Spandidos</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181101</creationdate><title>Deletion of poly(ADP‑ribose) polymerase-1 changes the composition of the microbiome in the gut</title><author>Vida, András ; Kardos, Gábor ; Kovács, Tünde ; Bodrogi, Balázs L ; Bai, Péter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-af63e54c4f82d7c51053acbd522017ff51459ebd8234f37b6d98fc9f8ee6b3fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenosine</topic><topic>Adenosine diphosphate</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>Cecum</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetes</topic><topic>Diarrhea</topic><topic>DNA</topic><topic>DNA polymerases</topic><topic>DNA repair</topic><topic>Duodenum</topic><topic>Feces</topic><topic>Gastrointestinal Microbiome</topic><topic>Genetic aspects</topic><topic>Genetic Association Studies</topic><topic>Genotype</topic><topic>Health aspects</topic><topic>Host-bacteria relationships</topic><topic>Host-Pathogen Interactions</topic><topic>Immune system</topic><topic>Inflammatory diseases</topic><topic>Metabolic disorders</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microbiomes</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Poly (ADP-Ribose) Polymerase-1 - deficiency</topic><topic>Poly(ADP-ribose)</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Poly(ADP-ribose) Polymerase 1</topic><topic>Proteins</topic><topic>Ribose</topic><topic>Ribosomal DNA</topic><topic>Rodents</topic><topic>rRNA 16S</topic><topic>Transcription factors</topic><toplevel>online_resources</toplevel><creatorcontrib>Vida, András</creatorcontrib><creatorcontrib>Kardos, Gábor</creatorcontrib><creatorcontrib>Kovács, Tünde</creatorcontrib><creatorcontrib>Bodrogi, Balázs L</creatorcontrib><creatorcontrib>Bai, Péter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular medicine reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vida, András</au><au>Kardos, Gábor</au><au>Kovács, Tünde</au><au>Bodrogi, Balázs L</au><au>Bai, Péter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deletion of poly(ADP‑ribose) polymerase-1 changes the composition of the microbiome in the gut</atitle><jtitle>Molecular medicine reports</jtitle><addtitle>Mol Med Rep</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>18</volume><issue>5</issue><spage>4335</spage><epage>4341</epage><pages>4335-4341</pages><issn>1791-2997</issn><eissn>1791-3004</eissn><abstract>Poly(adenosine diphosphate‑ribose) polymerase (PARP)‑1 is the prototypical PARP enzyme well known for its role in DNA repair and as a pro‑inflammatory protein. Since PARP1 is an important co‑factor of several other pro‑inflammatory proteins, in the present study the possible changes in microbial flora of PARP1 knockout mice were investigated. Samples from the duodenum, cecum and feces from wild type and PARP1 knockout C57BL/6J male mice were collected and 16S ribosomal RNA genes were sequenced. Based on the sequencing results, the microbiome and compared samples throughout the lower part of the gastrointestinal system were reconstructed. The present results demonstrated that the lack of PARP1 enzyme only disturbed the microbial flora of the duodenum, where the biodiversity increased in the knockout animals on the species level but decreased on the order level. The most prominent change was the overwhelming abundance of the family Porphyromonadaceae in the duodenum of PARP1‑/‑ animals, which disappeared in the cecum and feces where families were spread out more evenly than in the wild type animals. The findings of the present study may improve current understanding of the role of PARP1 in chronic inflammatory diseases.</abstract><cop>Greece</cop><pub>Spandidos Publications</pub><pmid>30221733</pmid><doi>10.3892/mmr.2018.9474</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1791-2997
ispartof Molecular medicine reports, 2018-11, Vol.18 (5), p.4335-4341
issn 1791-2997
1791-3004
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6172391
source Spandidos Publications Journals; MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adenosine
Adenosine diphosphate
Animals
Biodiversity
Cecum
Deoxyribonucleic acid
Diabetes
Diarrhea
DNA
DNA polymerases
DNA repair
Duodenum
Feces
Gastrointestinal Microbiome
Genetic aspects
Genetic Association Studies
Genotype
Health aspects
Host-bacteria relationships
Host-Pathogen Interactions
Immune system
Inflammatory diseases
Metabolic disorders
Metabolites
Mice
Mice, Knockout
Microbiomes
Microbiota (Symbiotic organisms)
Poly (ADP-Ribose) Polymerase-1 - deficiency
Poly(ADP-ribose)
Poly(ADP-ribose) polymerase
Poly(ADP-ribose) Polymerase 1
Proteins
Ribose
Ribosomal DNA
Rodents
rRNA 16S
Transcription factors
title Deletion of poly(ADP‑ribose) polymerase-1 changes the composition of the microbiome in the gut
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deletion%20of%20poly(ADP%E2%80%91ribose)%20polymerase-1%20changes%20the%20composition%20of%20the%20microbiome%20in%20the%20gut&rft.jtitle=Molecular%20medicine%20reports&rft.au=Vida,%20Andr%C3%A1s&rft.date=2018-11-01&rft.volume=18&rft.issue=5&rft.spage=4335&rft.epage=4341&rft.pages=4335-4341&rft.issn=1791-2997&rft.eissn=1791-3004&rft_id=info:doi/10.3892/mmr.2018.9474&rft_dat=%3Cgale_pubme%3EA559686447%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116781616&rft_id=info:pmid/30221733&rft_galeid=A559686447&rfr_iscdi=true