Rapid constriction of the selectivity filter underlies C-type inactivation in the KcsA potassium channel

C-type inactivation is a time-dependent process observed in many K channels whereby prolonged activation by an external stimulus leads to a reduction in ionic conduction. While C-type inactivation is thought to be a result of a constriction of the selectivity filter, the local dynamics of the proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of general physiology 2018-10, Vol.150 (10), p.1408-1420
Hauptverfasser: Li, Jing, Ostmeyer, Jared, Cuello, Luis G, Perozo, Eduardo, Roux, Benoît
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1420
container_issue 10
container_start_page 1408
container_title The Journal of general physiology
container_volume 150
creator Li, Jing
Ostmeyer, Jared
Cuello, Luis G
Perozo, Eduardo
Roux, Benoît
description C-type inactivation is a time-dependent process observed in many K channels whereby prolonged activation by an external stimulus leads to a reduction in ionic conduction. While C-type inactivation is thought to be a result of a constriction of the selectivity filter, the local dynamics of the process remain elusive. Here, we use molecular dynamics (MD) simulations of the KcsA channel to elucidate the nature of kinetically delayed activation/inactivation gating coupling. Microsecond-scale MD simulations based on the truncated form of the KcsA channel (C-terminal domain deleted) provide a first glimpse of the onset of C-type inactivation. We observe over multiple trajectories that the selectivity filter consistently undergoes a spontaneous and rapid (within 1-2 µs) transition to a constricted conformation when the intracellular activation gate is fully open, but remains in the conductive conformation when the activation gate is closed or partially open. Multidimensional umbrella sampling potential of mean force calculations and nonequilibrium voltage-driven simulations further confirm these observations. Electrophysiological measurements show that the truncated form of the KcsA channel inactivates faster and greater than full-length KcsA, which is consistent with truncated KcsA opening to a greater degree because of the absence of the C-terminal domain restraint. Together, these results imply that the observed kinetics underlying activation/inactivation gating reflect a rapid conductive-to-constricted transition of the selectivity filter that is allosterically controlled by the slow opening of the intracellular gate.
doi_str_mv 10.1085/jgp.201812082
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6168234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118797787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-8b93b4986540e1fc8d29a837638a114524fc0fafc4aaf927092b8449498617b53</originalsourceid><addsrcrecordid>eNpdkc9rHCEcxaU0NNu0x1yDtJdeJvHXjHoJhKU_QgKB0J7FcTXjMqtTdQL738fNpksTL4J-3tPvewCcYnSOkWgv1g_TOUFYYIIEeQcWuGWo4ZyJ92CBECENJrI9Bh9zXqO6WoI-gGOKECeU0wUY7vXkV9DEkEvypvgYYHSwDBZmO9p68OjLFjo_FpvgHFY2jd5muGzKdrLQB71D9LPOh2fdjclXcIpF5-znDTSDDsGOn8CR02O2n1_2E_Dnx_ffy1_N7d3P6-XVbWNaJEojekl7JkVXx7DYGbEiUgvKOyo0xqwlzBnktDNMaycJR5L0gjG5k2Det_QEXO59p7nf2JWxoSQ9qin5jU5bFbVXr2-CH9RDfFQd7gShrBp82RvEXLzKxhdrhppPqGEozDrSyq5C315eSfHvbHNRG5-NHUcdbJyzqmVQjispKvr1DbqOcwo1A0UwFlxyLnilmj1lUsw5WXf4MUZqV7SqRatD0ZU_-3_MA_2vWfoEz9mkPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118797787</pqid></control><display><type>article</type><title>Rapid constriction of the selectivity filter underlies C-type inactivation in the KcsA potassium channel</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Jing ; Ostmeyer, Jared ; Cuello, Luis G ; Perozo, Eduardo ; Roux, Benoît</creator><creatorcontrib>Li, Jing ; Ostmeyer, Jared ; Cuello, Luis G ; Perozo, Eduardo ; Roux, Benoît</creatorcontrib><description>C-type inactivation is a time-dependent process observed in many K channels whereby prolonged activation by an external stimulus leads to a reduction in ionic conduction. While C-type inactivation is thought to be a result of a constriction of the selectivity filter, the local dynamics of the process remain elusive. Here, we use molecular dynamics (MD) simulations of the KcsA channel to elucidate the nature of kinetically delayed activation/inactivation gating coupling. Microsecond-scale MD simulations based on the truncated form of the KcsA channel (C-terminal domain deleted) provide a first glimpse of the onset of C-type inactivation. We observe over multiple trajectories that the selectivity filter consistently undergoes a spontaneous and rapid (within 1-2 µs) transition to a constricted conformation when the intracellular activation gate is fully open, but remains in the conductive conformation when the activation gate is closed or partially open. Multidimensional umbrella sampling potential of mean force calculations and nonequilibrium voltage-driven simulations further confirm these observations. Electrophysiological measurements show that the truncated form of the KcsA channel inactivates faster and greater than full-length KcsA, which is consistent with truncated KcsA opening to a greater degree because of the absence of the C-terminal domain restraint. Together, these results imply that the observed kinetics underlying activation/inactivation gating reflect a rapid conductive-to-constricted transition of the selectivity filter that is allosterically controlled by the slow opening of the intracellular gate.</description><identifier>ISSN: 0022-1295</identifier><identifier>EISSN: 1540-7748</identifier><identifier>DOI: 10.1085/jgp.201812082</identifier><identifier>PMID: 30072373</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Channel gating ; Conduction ; Conformation ; Intracellular ; Ions ; Potassium</subject><ispartof>The Journal of general physiology, 2018-10, Vol.150 (10), p.1408-1420</ispartof><rights>2018 Li et al.</rights><rights>Copyright Rockefeller University Press Oct 2018</rights><rights>2018 Li et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-8b93b4986540e1fc8d29a837638a114524fc0fafc4aaf927092b8449498617b53</citedby><cites>FETCH-LOGICAL-c508t-8b93b4986540e1fc8d29a837638a114524fc0fafc4aaf927092b8449498617b53</cites><orcidid>0000-0001-5192-7568 ; 0000-0002-5254-2712 ; 0000000151927568 ; 0000000252542712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30072373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1462596$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Ostmeyer, Jared</creatorcontrib><creatorcontrib>Cuello, Luis G</creatorcontrib><creatorcontrib>Perozo, Eduardo</creatorcontrib><creatorcontrib>Roux, Benoît</creatorcontrib><title>Rapid constriction of the selectivity filter underlies C-type inactivation in the KcsA potassium channel</title><title>The Journal of general physiology</title><addtitle>J Gen Physiol</addtitle><description>C-type inactivation is a time-dependent process observed in many K channels whereby prolonged activation by an external stimulus leads to a reduction in ionic conduction. While C-type inactivation is thought to be a result of a constriction of the selectivity filter, the local dynamics of the process remain elusive. Here, we use molecular dynamics (MD) simulations of the KcsA channel to elucidate the nature of kinetically delayed activation/inactivation gating coupling. Microsecond-scale MD simulations based on the truncated form of the KcsA channel (C-terminal domain deleted) provide a first glimpse of the onset of C-type inactivation. We observe over multiple trajectories that the selectivity filter consistently undergoes a spontaneous and rapid (within 1-2 µs) transition to a constricted conformation when the intracellular activation gate is fully open, but remains in the conductive conformation when the activation gate is closed or partially open. Multidimensional umbrella sampling potential of mean force calculations and nonequilibrium voltage-driven simulations further confirm these observations. Electrophysiological measurements show that the truncated form of the KcsA channel inactivates faster and greater than full-length KcsA, which is consistent with truncated KcsA opening to a greater degree because of the absence of the C-terminal domain restraint. Together, these results imply that the observed kinetics underlying activation/inactivation gating reflect a rapid conductive-to-constricted transition of the selectivity filter that is allosterically controlled by the slow opening of the intracellular gate.</description><subject>Channel gating</subject><subject>Conduction</subject><subject>Conformation</subject><subject>Intracellular</subject><subject>Ions</subject><subject>Potassium</subject><issn>0022-1295</issn><issn>1540-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rHCEcxaU0NNu0x1yDtJdeJvHXjHoJhKU_QgKB0J7FcTXjMqtTdQL738fNpksTL4J-3tPvewCcYnSOkWgv1g_TOUFYYIIEeQcWuGWo4ZyJ92CBECENJrI9Bh9zXqO6WoI-gGOKECeU0wUY7vXkV9DEkEvypvgYYHSwDBZmO9p68OjLFjo_FpvgHFY2jd5muGzKdrLQB71D9LPOh2fdjclXcIpF5-znDTSDDsGOn8CR02O2n1_2E_Dnx_ffy1_N7d3P6-XVbWNaJEojekl7JkVXx7DYGbEiUgvKOyo0xqwlzBnktDNMaycJR5L0gjG5k2Det_QEXO59p7nf2JWxoSQ9qin5jU5bFbVXr2-CH9RDfFQd7gShrBp82RvEXLzKxhdrhppPqGEozDrSyq5C315eSfHvbHNRG5-NHUcdbJyzqmVQjispKvr1DbqOcwo1A0UwFlxyLnilmj1lUsw5WXf4MUZqV7SqRatD0ZU_-3_MA_2vWfoEz9mkPg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Li, Jing</creator><creator>Ostmeyer, Jared</creator><creator>Cuello, Luis G</creator><creator>Perozo, Eduardo</creator><creator>Roux, Benoît</creator><general>Rockefeller University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5192-7568</orcidid><orcidid>https://orcid.org/0000-0002-5254-2712</orcidid><orcidid>https://orcid.org/0000000151927568</orcidid><orcidid>https://orcid.org/0000000252542712</orcidid></search><sort><creationdate>20181001</creationdate><title>Rapid constriction of the selectivity filter underlies C-type inactivation in the KcsA potassium channel</title><author>Li, Jing ; Ostmeyer, Jared ; Cuello, Luis G ; Perozo, Eduardo ; Roux, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-8b93b4986540e1fc8d29a837638a114524fc0fafc4aaf927092b8449498617b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Channel gating</topic><topic>Conduction</topic><topic>Conformation</topic><topic>Intracellular</topic><topic>Ions</topic><topic>Potassium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Ostmeyer, Jared</creatorcontrib><creatorcontrib>Cuello, Luis G</creatorcontrib><creatorcontrib>Perozo, Eduardo</creatorcontrib><creatorcontrib>Roux, Benoît</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of general physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jing</au><au>Ostmeyer, Jared</au><au>Cuello, Luis G</au><au>Perozo, Eduardo</au><au>Roux, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid constriction of the selectivity filter underlies C-type inactivation in the KcsA potassium channel</atitle><jtitle>The Journal of general physiology</jtitle><addtitle>J Gen Physiol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>150</volume><issue>10</issue><spage>1408</spage><epage>1420</epage><pages>1408-1420</pages><issn>0022-1295</issn><eissn>1540-7748</eissn><abstract>C-type inactivation is a time-dependent process observed in many K channels whereby prolonged activation by an external stimulus leads to a reduction in ionic conduction. While C-type inactivation is thought to be a result of a constriction of the selectivity filter, the local dynamics of the process remain elusive. Here, we use molecular dynamics (MD) simulations of the KcsA channel to elucidate the nature of kinetically delayed activation/inactivation gating coupling. Microsecond-scale MD simulations based on the truncated form of the KcsA channel (C-terminal domain deleted) provide a first glimpse of the onset of C-type inactivation. We observe over multiple trajectories that the selectivity filter consistently undergoes a spontaneous and rapid (within 1-2 µs) transition to a constricted conformation when the intracellular activation gate is fully open, but remains in the conductive conformation when the activation gate is closed or partially open. Multidimensional umbrella sampling potential of mean force calculations and nonequilibrium voltage-driven simulations further confirm these observations. Electrophysiological measurements show that the truncated form of the KcsA channel inactivates faster and greater than full-length KcsA, which is consistent with truncated KcsA opening to a greater degree because of the absence of the C-terminal domain restraint. Together, these results imply that the observed kinetics underlying activation/inactivation gating reflect a rapid conductive-to-constricted transition of the selectivity filter that is allosterically controlled by the slow opening of the intracellular gate.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>30072373</pmid><doi>10.1085/jgp.201812082</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5192-7568</orcidid><orcidid>https://orcid.org/0000-0002-5254-2712</orcidid><orcidid>https://orcid.org/0000000151927568</orcidid><orcidid>https://orcid.org/0000000252542712</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1295
ispartof The Journal of general physiology, 2018-10, Vol.150 (10), p.1408-1420
issn 0022-1295
1540-7748
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6168234
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Channel gating
Conduction
Conformation
Intracellular
Ions
Potassium
title Rapid constriction of the selectivity filter underlies C-type inactivation in the KcsA potassium channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20constriction%20of%20the%20selectivity%20filter%20underlies%20C-type%20inactivation%20in%20the%20KcsA%20potassium%20channel&rft.jtitle=The%20Journal%20of%20general%20physiology&rft.au=Li,%20Jing&rft.date=2018-10-01&rft.volume=150&rft.issue=10&rft.spage=1408&rft.epage=1420&rft.pages=1408-1420&rft.issn=0022-1295&rft.eissn=1540-7748&rft_id=info:doi/10.1085/jgp.201812082&rft_dat=%3Cproquest_pubme%3E2118797787%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118797787&rft_id=info:pmid/30072373&rfr_iscdi=true