COMPLEX-VALUED TIME SERIES MODELING FOR IMPROVED ACTIVATION DETECTION IN FMRI STUDIES
A complex-valued data-based model with pth order autoregressive errors and general real/imaginary error covariance structure is proposed as an alternative to the commonly used magnitude-only data-based autoregressive model for fMRI time series. Likelihood-ratio-test-based activation statistics are d...
Gespeichert in:
Veröffentlicht in: | The annals of applied statistics 2018-09, Vol.12 (3), p.1451-1478 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1478 |
---|---|
container_issue | 3 |
container_start_page | 1451 |
container_title | The annals of applied statistics |
container_volume | 12 |
creator | Adrian, Daniel W. Maitra, Ranjan Rowe, Daniel B. |
description | A complex-valued data-based model with pth order autoregressive errors and general real/imaginary error covariance structure is proposed as an alternative to the commonly used magnitude-only data-based autoregressive model for fMRI time series. Likelihood-ratio-test-based activation statistics are derived for both models and compared for experimental and simulated data. For a dataset from a right-hand finger-tapping experiment, the activation map obtained using complex-valued modeling more clearly identifies the primary activation region (left functional central sulcus) than the magnitude-only model. Such improved accuracy in mapping the left functional central sulcus has important implications in neurosurgical planning for tumor and epilepsy patients. Additionally, we develop magnitude and phase detrending procedures for complex-valued time series and examine the effect of spatial smoothing. These methods improve the power of complex-valued data-based activation statistics. Our results advocate for the use of the complex-valued data and the modeling of its dependence structures as a more efficient and reliable tool in fMRI experiments over the current practice of using only magnitude-valued datasets. |
doi_str_mv | 10.1214/17-AOAS1117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6168091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26542581</jstor_id><sourcerecordid>26542581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-60e1941c2fe52c55f1b381de46f16d1eae2cdfeac82ec88d0e30e76f08a1322d3</originalsourceid><addsrcrecordid>eNpVkctLw0AQxhdRfJ88KzkKEt3ZR7K9CCHd6kLSSJsWb0vcbLTSNpptBf97U_tATzPw_eabjxmELgDfAgF2B6EfZdEQAMI9dAwdBn5IKd5f9ZT4AfDwCJ04944xZ4LBITqimHQYw-wYjeIsfUrksz-OkpHserlKpTeUAyWHXpp1ZaL6D14vG3gqfRpk45aI4lyNo1xlfa8rcxn_dqrv9dKB8ob5qNuOnqGDqpg6e76pp2jUk3n86CfZg4qjxDcM04UfYLuKa0hlOTGcV_BCBZSWBRUEJdjCElNWtjCCWCNEiS3FNgwqLAqghJT0FN2vfT-WLzNbGjtfNMVUfzSTWdF867qY6P_KfPKmX-svHUAgcAdag-uNQVN_Lq1b6NnEGTudFnNbL50m7VGBU8pFi96sUdPUzjW22q0BrFeP0BDq7SNa-upvsh27vXwLXK6Bd7eom51OAs4IF0B_AJkmhmk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117153358</pqid></control><display><type>article</type><title>COMPLEX-VALUED TIME SERIES MODELING FOR IMPROVED ACTIVATION DETECTION IN FMRI STUDIES</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Adrian, Daniel W. ; Maitra, Ranjan ; Rowe, Daniel B.</creator><creatorcontrib>Adrian, Daniel W. ; Maitra, Ranjan ; Rowe, Daniel B.</creatorcontrib><description>A complex-valued data-based model with pth order autoregressive errors and general real/imaginary error covariance structure is proposed as an alternative to the commonly used magnitude-only data-based autoregressive model for fMRI time series. Likelihood-ratio-test-based activation statistics are derived for both models and compared for experimental and simulated data. For a dataset from a right-hand finger-tapping experiment, the activation map obtained using complex-valued modeling more clearly identifies the primary activation region (left functional central sulcus) than the magnitude-only model. Such improved accuracy in mapping the left functional central sulcus has important implications in neurosurgical planning for tumor and epilepsy patients. Additionally, we develop magnitude and phase detrending procedures for complex-valued time series and examine the effect of spatial smoothing. These methods improve the power of complex-valued data-based activation statistics. Our results advocate for the use of the complex-valued data and the modeling of its dependence structures as a more efficient and reliable tool in fMRI experiments over the current practice of using only magnitude-valued datasets.</description><identifier>ISSN: 1932-6157</identifier><identifier>EISSN: 1941-7330</identifier><identifier>DOI: 10.1214/17-AOAS1117</identifier><identifier>PMID: 30294404</identifier><language>eng</language><publisher>United States: Institute of Mathematical Statistics</publisher><ispartof>The annals of applied statistics, 2018-09, Vol.12 (3), p.1451-1478</ispartof><rights>Institute of Mathematical Statistics, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-60e1941c2fe52c55f1b381de46f16d1eae2cdfeac82ec88d0e30e76f08a1322d3</citedby><cites>FETCH-LOGICAL-c403t-60e1941c2fe52c55f1b381de46f16d1eae2cdfeac82ec88d0e30e76f08a1322d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26542581$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26542581$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30294404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adrian, Daniel W.</creatorcontrib><creatorcontrib>Maitra, Ranjan</creatorcontrib><creatorcontrib>Rowe, Daniel B.</creatorcontrib><title>COMPLEX-VALUED TIME SERIES MODELING FOR IMPROVED ACTIVATION DETECTION IN FMRI STUDIES</title><title>The annals of applied statistics</title><addtitle>Ann Appl Stat</addtitle><description>A complex-valued data-based model with pth order autoregressive errors and general real/imaginary error covariance structure is proposed as an alternative to the commonly used magnitude-only data-based autoregressive model for fMRI time series. Likelihood-ratio-test-based activation statistics are derived for both models and compared for experimental and simulated data. For a dataset from a right-hand finger-tapping experiment, the activation map obtained using complex-valued modeling more clearly identifies the primary activation region (left functional central sulcus) than the magnitude-only model. Such improved accuracy in mapping the left functional central sulcus has important implications in neurosurgical planning for tumor and epilepsy patients. Additionally, we develop magnitude and phase detrending procedures for complex-valued time series and examine the effect of spatial smoothing. These methods improve the power of complex-valued data-based activation statistics. Our results advocate for the use of the complex-valued data and the modeling of its dependence structures as a more efficient and reliable tool in fMRI experiments over the current practice of using only magnitude-valued datasets.</description><issn>1932-6157</issn><issn>1941-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkctLw0AQxhdRfJ88KzkKEt3ZR7K9CCHd6kLSSJsWb0vcbLTSNpptBf97U_tATzPw_eabjxmELgDfAgF2B6EfZdEQAMI9dAwdBn5IKd5f9ZT4AfDwCJ04944xZ4LBITqimHQYw-wYjeIsfUrksz-OkpHserlKpTeUAyWHXpp1ZaL6D14vG3gqfRpk45aI4lyNo1xlfa8rcxn_dqrv9dKB8ob5qNuOnqGDqpg6e76pp2jUk3n86CfZg4qjxDcM04UfYLuKa0hlOTGcV_BCBZSWBRUEJdjCElNWtjCCWCNEiS3FNgwqLAqghJT0FN2vfT-WLzNbGjtfNMVUfzSTWdF867qY6P_KfPKmX-svHUAgcAdag-uNQVN_Lq1b6NnEGTudFnNbL50m7VGBU8pFi96sUdPUzjW22q0BrFeP0BDq7SNa-upvsh27vXwLXK6Bd7eom51OAs4IF0B_AJkmhmk</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Adrian, Daniel W.</creator><creator>Maitra, Ranjan</creator><creator>Rowe, Daniel B.</creator><general>Institute of Mathematical Statistics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180901</creationdate><title>COMPLEX-VALUED TIME SERIES MODELING FOR IMPROVED ACTIVATION DETECTION IN FMRI STUDIES</title><author>Adrian, Daniel W. ; Maitra, Ranjan ; Rowe, Daniel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-60e1941c2fe52c55f1b381de46f16d1eae2cdfeac82ec88d0e30e76f08a1322d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adrian, Daniel W.</creatorcontrib><creatorcontrib>Maitra, Ranjan</creatorcontrib><creatorcontrib>Rowe, Daniel B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The annals of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adrian, Daniel W.</au><au>Maitra, Ranjan</au><au>Rowe, Daniel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMPLEX-VALUED TIME SERIES MODELING FOR IMPROVED ACTIVATION DETECTION IN FMRI STUDIES</atitle><jtitle>The annals of applied statistics</jtitle><addtitle>Ann Appl Stat</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>12</volume><issue>3</issue><spage>1451</spage><epage>1478</epage><pages>1451-1478</pages><issn>1932-6157</issn><eissn>1941-7330</eissn><abstract>A complex-valued data-based model with pth order autoregressive errors and general real/imaginary error covariance structure is proposed as an alternative to the commonly used magnitude-only data-based autoregressive model for fMRI time series. Likelihood-ratio-test-based activation statistics are derived for both models and compared for experimental and simulated data. For a dataset from a right-hand finger-tapping experiment, the activation map obtained using complex-valued modeling more clearly identifies the primary activation region (left functional central sulcus) than the magnitude-only model. Such improved accuracy in mapping the left functional central sulcus has important implications in neurosurgical planning for tumor and epilepsy patients. Additionally, we develop magnitude and phase detrending procedures for complex-valued time series and examine the effect of spatial smoothing. These methods improve the power of complex-valued data-based activation statistics. Our results advocate for the use of the complex-valued data and the modeling of its dependence structures as a more efficient and reliable tool in fMRI experiments over the current practice of using only magnitude-valued datasets.</abstract><cop>United States</cop><pub>Institute of Mathematical Statistics</pub><pmid>30294404</pmid><doi>10.1214/17-AOAS1117</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6157 |
ispartof | The annals of applied statistics, 2018-09, Vol.12 (3), p.1451-1478 |
issn | 1932-6157 1941-7330 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6168091 |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
title | COMPLEX-VALUED TIME SERIES MODELING FOR IMPROVED ACTIVATION DETECTION IN FMRI STUDIES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMPLEX-VALUED%20TIME%20SERIES%20MODELING%20FOR%20IMPROVED%20ACTIVATION%20DETECTION%20IN%20FMRI%20STUDIES&rft.jtitle=The%20annals%20of%20applied%20statistics&rft.au=Adrian,%20Daniel%20W.&rft.date=2018-09-01&rft.volume=12&rft.issue=3&rft.spage=1451&rft.epage=1478&rft.pages=1451-1478&rft.issn=1932-6157&rft.eissn=1941-7330&rft_id=info:doi/10.1214/17-AOAS1117&rft_dat=%3Cjstor_pubme%3E26542581%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117153358&rft_id=info:pmid/30294404&rft_jstor_id=26542581&rfr_iscdi=true |