Evaluation of deep learning methods for parotid gland segmentation from CT images

The segmentation of organs at risk is a crucial and time-consuming step in radiotherapy planning. Good automatic methods can significantly reduce the time clinicians have to spend on this task. Due to its variability in shape and low contrast to surrounding structures, segmenting the parotid gland i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical imaging (Bellingham, Wash.) Wash.), 2019-01, Vol.6 (1), p.011005-011005
Hauptverfasser: Hänsch, Annika, Schwier, Michael, Gass, Tobias, Morgas, Tomasz, Haas, Benjamin, Dicken, Volker, Meine, Hans, Klein, Jan, Hahn, Horst K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 011005
container_issue 1
container_start_page 011005
container_title Journal of medical imaging (Bellingham, Wash.)
container_volume 6
creator Hänsch, Annika
Schwier, Michael
Gass, Tobias
Morgas, Tomasz
Haas, Benjamin
Dicken, Volker
Meine, Hans
Klein, Jan
Hahn, Horst K
description The segmentation of organs at risk is a crucial and time-consuming step in radiotherapy planning. Good automatic methods can significantly reduce the time clinicians have to spend on this task. Due to its variability in shape and low contrast to surrounding structures, segmenting the parotid gland is challenging. Motivated by the recent success of deep learning, we study the use of two-dimensional (2-D), 2-D ensemble, and three-dimensional (3-D) U-Nets for segmentation. The mean Dice similarity to ground truth is for all three models. A patch-based approach for class balancing seems promising for false-positive reduction. The 2-D ensemble and 3-D U-Net are applied to the test data of the 2015 MICCAI challenge on head and neck autosegmentation. Both deep learning methods generalize well onto independent data (Dice 0.865 and 0.88) and are superior to a selection of model- and atlas-based methods with respect to the Dice coefficient. Since appropriate reference annotations are essential for training but often difficult and expensive to obtain, it is important to know how many samples are needed for training. We evaluate the performance after training with different-sized training sets and observe no significant increase in the Dice coefficient for more than 250 training cases.
doi_str_mv 10.1117/1.JMI.6.1.011005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6165912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115750808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f4c7f54dd768ea442b9beee99491def5ef4b191608b14b6aa8d314c08574f32a3</originalsourceid><addsrcrecordid>eNpVUUFLwzAYDaKo6O6eJEcvq_nSNG0vgoypE0WEeQ5p86WrtM1MOsF_b2Rz6OmFfO-97yWPkAtgCQDk15A8Pi8SmUDCABjLDsgpT3k5FSmww_2Z8RMyCeGdsR9WxkEck5N4m0vO-Sl5nX_qbqPH1g3UWWoQ17RD7Yd2aGiP48qZQK3zdK29G1tDm04PhgZsehzGrc5619PZkra9bjCckyOru4CTHZ6Rt7v5cvYwfXq5X8xun6Z1WspxakWd20wYk8sCtRC8KitELEtRgkGboRUVlCBZUYGopNaFSUHUrMhyYVOu0zNys_Vdb6oeTR3jeN2ptY8x_JdyulX_J0O7Uo37VBJkVgKPBlc7A-8-NhhG1behxi4-EN0mKA6Q5RkrWBGpbEutvQvBo92vAaZ-ylCgYhlKRtyWESWXf-PtBb9fn34D4CaGVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115750808</pqid></control><display><type>article</type><title>Evaluation of deep learning methods for parotid gland segmentation from CT images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hänsch, Annika ; Schwier, Michael ; Gass, Tobias ; Morgas, Tomasz ; Haas, Benjamin ; Dicken, Volker ; Meine, Hans ; Klein, Jan ; Hahn, Horst K</creator><creatorcontrib>Hänsch, Annika ; Schwier, Michael ; Gass, Tobias ; Morgas, Tomasz ; Haas, Benjamin ; Dicken, Volker ; Meine, Hans ; Klein, Jan ; Hahn, Horst K</creatorcontrib><description>The segmentation of organs at risk is a crucial and time-consuming step in radiotherapy planning. Good automatic methods can significantly reduce the time clinicians have to spend on this task. Due to its variability in shape and low contrast to surrounding structures, segmenting the parotid gland is challenging. Motivated by the recent success of deep learning, we study the use of two-dimensional (2-D), 2-D ensemble, and three-dimensional (3-D) U-Nets for segmentation. The mean Dice similarity to ground truth is for all three models. A patch-based approach for class balancing seems promising for false-positive reduction. The 2-D ensemble and 3-D U-Net are applied to the test data of the 2015 MICCAI challenge on head and neck autosegmentation. Both deep learning methods generalize well onto independent data (Dice 0.865 and 0.88) and are superior to a selection of model- and atlas-based methods with respect to the Dice coefficient. Since appropriate reference annotations are essential for training but often difficult and expensive to obtain, it is important to know how many samples are needed for training. We evaluate the performance after training with different-sized training sets and observe no significant increase in the Dice coefficient for more than 250 training cases.</description><identifier>ISSN: 2329-4302</identifier><identifier>EISSN: 2329-4310</identifier><identifier>DOI: 10.1117/1.JMI.6.1.011005</identifier><identifier>PMID: 30276222</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Special Section on Artificial Intelligence in Medical Imaging</subject><ispartof>Journal of medical imaging (Bellingham, Wash.), 2019-01, Vol.6 (1), p.011005-011005</ispartof><rights>The Authors. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f4c7f54dd768ea442b9beee99491def5ef4b191608b14b6aa8d314c08574f32a3</citedby><cites>FETCH-LOGICAL-c396t-f4c7f54dd768ea442b9beee99491def5ef4b191608b14b6aa8d314c08574f32a3</cites><orcidid>0000-0002-7557-5007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165912/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165912/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30276222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hänsch, Annika</creatorcontrib><creatorcontrib>Schwier, Michael</creatorcontrib><creatorcontrib>Gass, Tobias</creatorcontrib><creatorcontrib>Morgas, Tomasz</creatorcontrib><creatorcontrib>Haas, Benjamin</creatorcontrib><creatorcontrib>Dicken, Volker</creatorcontrib><creatorcontrib>Meine, Hans</creatorcontrib><creatorcontrib>Klein, Jan</creatorcontrib><creatorcontrib>Hahn, Horst K</creatorcontrib><title>Evaluation of deep learning methods for parotid gland segmentation from CT images</title><title>Journal of medical imaging (Bellingham, Wash.)</title><addtitle>J Med Imaging (Bellingham)</addtitle><description>The segmentation of organs at risk is a crucial and time-consuming step in radiotherapy planning. Good automatic methods can significantly reduce the time clinicians have to spend on this task. Due to its variability in shape and low contrast to surrounding structures, segmenting the parotid gland is challenging. Motivated by the recent success of deep learning, we study the use of two-dimensional (2-D), 2-D ensemble, and three-dimensional (3-D) U-Nets for segmentation. The mean Dice similarity to ground truth is for all three models. A patch-based approach for class balancing seems promising for false-positive reduction. The 2-D ensemble and 3-D U-Net are applied to the test data of the 2015 MICCAI challenge on head and neck autosegmentation. Both deep learning methods generalize well onto independent data (Dice 0.865 and 0.88) and are superior to a selection of model- and atlas-based methods with respect to the Dice coefficient. Since appropriate reference annotations are essential for training but often difficult and expensive to obtain, it is important to know how many samples are needed for training. We evaluate the performance after training with different-sized training sets and observe no significant increase in the Dice coefficient for more than 250 training cases.</description><subject>Special Section on Artificial Intelligence in Medical Imaging</subject><issn>2329-4302</issn><issn>2329-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUUFLwzAYDaKo6O6eJEcvq_nSNG0vgoypE0WEeQ5p86WrtM1MOsF_b2Rz6OmFfO-97yWPkAtgCQDk15A8Pi8SmUDCABjLDsgpT3k5FSmww_2Z8RMyCeGdsR9WxkEck5N4m0vO-Sl5nX_qbqPH1g3UWWoQ17RD7Yd2aGiP48qZQK3zdK29G1tDm04PhgZsehzGrc5619PZkra9bjCckyOru4CTHZ6Rt7v5cvYwfXq5X8xun6Z1WspxakWd20wYk8sCtRC8KitELEtRgkGboRUVlCBZUYGopNaFSUHUrMhyYVOu0zNys_Vdb6oeTR3jeN2ptY8x_JdyulX_J0O7Uo37VBJkVgKPBlc7A-8-NhhG1behxi4-EN0mKA6Q5RkrWBGpbEutvQvBo92vAaZ-ylCgYhlKRtyWESWXf-PtBb9fn34D4CaGVg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Hänsch, Annika</creator><creator>Schwier, Michael</creator><creator>Gass, Tobias</creator><creator>Morgas, Tomasz</creator><creator>Haas, Benjamin</creator><creator>Dicken, Volker</creator><creator>Meine, Hans</creator><creator>Klein, Jan</creator><creator>Hahn, Horst K</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7557-5007</orcidid></search><sort><creationdate>20190101</creationdate><title>Evaluation of deep learning methods for parotid gland segmentation from CT images</title><author>Hänsch, Annika ; Schwier, Michael ; Gass, Tobias ; Morgas, Tomasz ; Haas, Benjamin ; Dicken, Volker ; Meine, Hans ; Klein, Jan ; Hahn, Horst K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f4c7f54dd768ea442b9beee99491def5ef4b191608b14b6aa8d314c08574f32a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Special Section on Artificial Intelligence in Medical Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hänsch, Annika</creatorcontrib><creatorcontrib>Schwier, Michael</creatorcontrib><creatorcontrib>Gass, Tobias</creatorcontrib><creatorcontrib>Morgas, Tomasz</creatorcontrib><creatorcontrib>Haas, Benjamin</creatorcontrib><creatorcontrib>Dicken, Volker</creatorcontrib><creatorcontrib>Meine, Hans</creatorcontrib><creatorcontrib>Klein, Jan</creatorcontrib><creatorcontrib>Hahn, Horst K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medical imaging (Bellingham, Wash.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hänsch, Annika</au><au>Schwier, Michael</au><au>Gass, Tobias</au><au>Morgas, Tomasz</au><au>Haas, Benjamin</au><au>Dicken, Volker</au><au>Meine, Hans</au><au>Klein, Jan</au><au>Hahn, Horst K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of deep learning methods for parotid gland segmentation from CT images</atitle><jtitle>Journal of medical imaging (Bellingham, Wash.)</jtitle><addtitle>J Med Imaging (Bellingham)</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>011005</spage><epage>011005</epage><pages>011005-011005</pages><issn>2329-4302</issn><eissn>2329-4310</eissn><abstract>The segmentation of organs at risk is a crucial and time-consuming step in radiotherapy planning. Good automatic methods can significantly reduce the time clinicians have to spend on this task. Due to its variability in shape and low contrast to surrounding structures, segmenting the parotid gland is challenging. Motivated by the recent success of deep learning, we study the use of two-dimensional (2-D), 2-D ensemble, and three-dimensional (3-D) U-Nets for segmentation. The mean Dice similarity to ground truth is for all three models. A patch-based approach for class balancing seems promising for false-positive reduction. The 2-D ensemble and 3-D U-Net are applied to the test data of the 2015 MICCAI challenge on head and neck autosegmentation. Both deep learning methods generalize well onto independent data (Dice 0.865 and 0.88) and are superior to a selection of model- and atlas-based methods with respect to the Dice coefficient. Since appropriate reference annotations are essential for training but often difficult and expensive to obtain, it is important to know how many samples are needed for training. We evaluate the performance after training with different-sized training sets and observe no significant increase in the Dice coefficient for more than 250 training cases.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>30276222</pmid><doi>10.1117/1.JMI.6.1.011005</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7557-5007</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-4302
ispartof Journal of medical imaging (Bellingham, Wash.), 2019-01, Vol.6 (1), p.011005-011005
issn 2329-4302
2329-4310
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6165912
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Special Section on Artificial Intelligence in Medical Imaging
title Evaluation of deep learning methods for parotid gland segmentation from CT images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A16%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20deep%20learning%20methods%20for%20parotid%20gland%20segmentation%20from%20CT%20images&rft.jtitle=Journal%20of%20medical%20imaging%20(Bellingham,%20Wash.)&rft.au=H%C3%A4nsch,%20Annika&rft.date=2019-01-01&rft.volume=6&rft.issue=1&rft.spage=011005&rft.epage=011005&rft.pages=011005-011005&rft.issn=2329-4302&rft.eissn=2329-4310&rft_id=info:doi/10.1117/1.JMI.6.1.011005&rft_dat=%3Cproquest_pubme%3E2115750808%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115750808&rft_id=info:pmid/30276222&rfr_iscdi=true