A Bayesian Downscaler Model to Estimate Daily PM2.5 Levels in the Conterminous US

There has been growing interest in extending the coverage of ground particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) monitoring networks based on satellite remote sensing data. With broad spatial and temporal coverage, a satellite-based monitoring network has a strong potential to compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2018-09, Vol.15 (9), p.1999
Hauptverfasser: Wang, Yikai, Hu, Xuefei, Chang, Howard, Waller, Lance, Belle, Jessica, Liu, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There has been growing interest in extending the coverage of ground particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) monitoring networks based on satellite remote sensing data. With broad spatial and temporal coverage, a satellite-based monitoring network has a strong potential to complement the ground monitor system in terms of the spatiotemporal availability of the air quality data. However, most existing calibration models focus on a relatively small spatial domain and cannot be generalized to a national study. In this paper, we proposed a statistically reliable and interpretable national modeling framework based on Bayesian downscaling methods to be applied to the calibration of the daily ground PM2.5 concentrations across the conterminous United States using satellite-retrieved aerosol optical depth (AOD) and other ancillary predictors in 2011. Our approach flexibly models the PM2.5 versus AOD and the potential related geographical factors varying across the climate regions and yields spatial- and temporal-specific parameters to enhance model interpretability. Moreover, our model accurately predicted the national PM2.5 with an R2 at 70% and generated reliable annual and seasonal PM2.5 concentration maps with its SD. Overall, this modeling framework can be applied to national-scale PM2.5 exposure assessments and can also quantify the prediction errors.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph15091999