Signatures of proprioceptive control in Caenorhabditis elegans locomotion

Animal neuromechanics describes the coordinated self-propelled movement of a body, subject to the combined effects of internal neural control and mechanical forces. Here we use a computational model to identify effects of neural and mechanical modulation on undulatory forward locomotion of Caenorhab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2018-09, Vol.373 (1758), p.20180208
Hauptverfasser: Denham, Jack E., Ranner, Thomas, Cohen, Netta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1758
container_start_page 20180208
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 373
creator Denham, Jack E.
Ranner, Thomas
Cohen, Netta
description Animal neuromechanics describes the coordinated self-propelled movement of a body, subject to the combined effects of internal neural control and mechanical forces. Here we use a computational model to identify effects of neural and mechanical modulation on undulatory forward locomotion of Caenorhabditis elegans, with a focus on proprioceptively driven neural control. We reveal a fundamental relationship between body elasticity and environmental drag in determining the dynamics of the body and demonstrate the manifestation of this relationship in the context of proprioceptively driven control. By considering characteristics unique to proprioceptive neurons, we predict the signatures of internal gait modulation that contrast with the known signatures of externally or biomechanically modulated gait. We further show that proprioceptive feedback can suppress neuromechanical phase lags during undulatory locomotion, contrasting with well studied advancing phase lags that have long been a signature of centrally generated, feed-forward control. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.
doi_str_mv 10.1098/rstb.2018.0208
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6158217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102323887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-e5eafbda67173b1010b6030ad4ab88002473134e28c7e4b759ab07508eec241d3</originalsourceid><addsrcrecordid>eNp9kM1v0zAYhy0EYqVw5Yhy5JLy-iOxc0GCahuTJk1i42w5ztvOI42D7VQqfz3OOiaGBCfLen9fegh5S2FFoVEfQkztigFVK2CgnpEFFZKWrJHwnCygqVmpBK9PyKsY7wCgqaR4SU44zBZRL8jFtdsOJk0BY-E3xRj8GJy3OCa3x8L6IQXfF24o1gYHH25N27nkYoE9bs0Qi95bv_PJ-eE1ebExfcQ3D--SfDs7vVl_KS-vzi_Wny5LKxqRSqzQbNrO1JJK3lKg0NbAwXTCtEoBMCE55QKZshJFK6vGtCArUIiWCdrxJfl4zB2ndoedxTzR9DrP3plw0N44_fQyuFu99Xtd00qxXLok7x8Cgv8xYUx656LFvjcD-ilqRoFxxpWapauj1AYfY8DNYw0FPfPXM389w9Qz_2x49-e4R_lv4FnAj4LgD5mStw7TQd_5KQz5--_Y7_9zfb2--bznkjsqq-xQnIJkmZz-6cZjVD5qF-OE-l7yNP7vtl8tP7fX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102323887</pqid></control><display><type>article</type><title>Signatures of proprioceptive control in Caenorhabditis elegans locomotion</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><creator>Denham, Jack E. ; Ranner, Thomas ; Cohen, Netta</creator><creatorcontrib>Denham, Jack E. ; Ranner, Thomas ; Cohen, Netta</creatorcontrib><description>Animal neuromechanics describes the coordinated self-propelled movement of a body, subject to the combined effects of internal neural control and mechanical forces. Here we use a computational model to identify effects of neural and mechanical modulation on undulatory forward locomotion of Caenorhabditis elegans, with a focus on proprioceptively driven neural control. We reveal a fundamental relationship between body elasticity and environmental drag in determining the dynamics of the body and demonstrate the manifestation of this relationship in the context of proprioceptively driven control. By considering characteristics unique to proprioceptive neurons, we predict the signatures of internal gait modulation that contrast with the known signatures of externally or biomechanically modulated gait. We further show that proprioceptive feedback can suppress neuromechanical phase lags during undulatory locomotion, contrasting with well studied advancing phase lags that have long been a signature of centrally generated, feed-forward control. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2018.0208</identifier><identifier>PMID: 30201846</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Microswimmers ; Nematodes ; Neural Control ; Proprioception ; Undulatory Locomotion</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2018-09, Vol.373 (1758), p.20180208</ispartof><rights>2018 The Author(s)</rights><rights>2018 The Author(s).</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-e5eafbda67173b1010b6030ad4ab88002473134e28c7e4b759ab07508eec241d3</citedby><cites>FETCH-LOGICAL-c494t-e5eafbda67173b1010b6030ad4ab88002473134e28c7e4b759ab07508eec241d3</cites><orcidid>0000-0001-7682-3175 ; 0000-0002-1633-3315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158217/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158217/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30201846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Denham, Jack E.</creatorcontrib><creatorcontrib>Ranner, Thomas</creatorcontrib><creatorcontrib>Cohen, Netta</creatorcontrib><title>Signatures of proprioceptive control in Caenorhabditis elegans locomotion</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Phil. Trans. R. Soc. B</addtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>Animal neuromechanics describes the coordinated self-propelled movement of a body, subject to the combined effects of internal neural control and mechanical forces. Here we use a computational model to identify effects of neural and mechanical modulation on undulatory forward locomotion of Caenorhabditis elegans, with a focus on proprioceptively driven neural control. We reveal a fundamental relationship between body elasticity and environmental drag in determining the dynamics of the body and demonstrate the manifestation of this relationship in the context of proprioceptively driven control. By considering characteristics unique to proprioceptive neurons, we predict the signatures of internal gait modulation that contrast with the known signatures of externally or biomechanically modulated gait. We further show that proprioceptive feedback can suppress neuromechanical phase lags during undulatory locomotion, contrasting with well studied advancing phase lags that have long been a signature of centrally generated, feed-forward control. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.</description><subject>Microswimmers</subject><subject>Nematodes</subject><subject>Neural Control</subject><subject>Proprioception</subject><subject>Undulatory Locomotion</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1v0zAYhy0EYqVw5Yhy5JLy-iOxc0GCahuTJk1i42w5ztvOI42D7VQqfz3OOiaGBCfLen9fegh5S2FFoVEfQkztigFVK2CgnpEFFZKWrJHwnCygqVmpBK9PyKsY7wCgqaR4SU44zBZRL8jFtdsOJk0BY-E3xRj8GJy3OCa3x8L6IQXfF24o1gYHH25N27nkYoE9bs0Qi95bv_PJ-eE1ebExfcQ3D--SfDs7vVl_KS-vzi_Wny5LKxqRSqzQbNrO1JJK3lKg0NbAwXTCtEoBMCE55QKZshJFK6vGtCArUIiWCdrxJfl4zB2ndoedxTzR9DrP3plw0N44_fQyuFu99Xtd00qxXLok7x8Cgv8xYUx656LFvjcD-ilqRoFxxpWapauj1AYfY8DNYw0FPfPXM389w9Qz_2x49-e4R_lv4FnAj4LgD5mStw7TQd_5KQz5--_Y7_9zfb2--bznkjsqq-xQnIJkmZz-6cZjVD5qF-OE-l7yNP7vtl8tP7fX</recordid><startdate>20180910</startdate><enddate>20180910</enddate><creator>Denham, Jack E.</creator><creator>Ranner, Thomas</creator><creator>Cohen, Netta</creator><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7682-3175</orcidid><orcidid>https://orcid.org/0000-0002-1633-3315</orcidid></search><sort><creationdate>20180910</creationdate><title>Signatures of proprioceptive control in Caenorhabditis elegans locomotion</title><author>Denham, Jack E. ; Ranner, Thomas ; Cohen, Netta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-e5eafbda67173b1010b6030ad4ab88002473134e28c7e4b759ab07508eec241d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Microswimmers</topic><topic>Nematodes</topic><topic>Neural Control</topic><topic>Proprioception</topic><topic>Undulatory Locomotion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denham, Jack E.</creatorcontrib><creatorcontrib>Ranner, Thomas</creatorcontrib><creatorcontrib>Cohen, Netta</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denham, Jack E.</au><au>Ranner, Thomas</au><au>Cohen, Netta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signatures of proprioceptive control in Caenorhabditis elegans locomotion</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><stitle>Phil. Trans. R. Soc. B</stitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2018-09-10</date><risdate>2018</risdate><volume>373</volume><issue>1758</issue><spage>20180208</spage><pages>20180208-</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Animal neuromechanics describes the coordinated self-propelled movement of a body, subject to the combined effects of internal neural control and mechanical forces. Here we use a computational model to identify effects of neural and mechanical modulation on undulatory forward locomotion of Caenorhabditis elegans, with a focus on proprioceptively driven neural control. We reveal a fundamental relationship between body elasticity and environmental drag in determining the dynamics of the body and demonstrate the manifestation of this relationship in the context of proprioceptively driven control. By considering characteristics unique to proprioceptive neurons, we predict the signatures of internal gait modulation that contrast with the known signatures of externally or biomechanically modulated gait. We further show that proprioceptive feedback can suppress neuromechanical phase lags during undulatory locomotion, contrasting with well studied advancing phase lags that have long been a signature of centrally generated, feed-forward control. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>30201846</pmid><doi>10.1098/rstb.2018.0208</doi><orcidid>https://orcid.org/0000-0001-7682-3175</orcidid><orcidid>https://orcid.org/0000-0002-1633-3315</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2018-09, Vol.373 (1758), p.20180208
issn 0962-8436
1471-2970
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6158217
source Jstor Complete Legacy; PubMed Central
subjects Microswimmers
Nematodes
Neural Control
Proprioception
Undulatory Locomotion
title Signatures of proprioceptive control in Caenorhabditis elegans locomotion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signatures%20of%20proprioceptive%20control%20in%20Caenorhabditis%20elegans%20locomotion&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Denham,%20Jack%20E.&rft.date=2018-09-10&rft.volume=373&rft.issue=1758&rft.spage=20180208&rft.pages=20180208-&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2018.0208&rft_dat=%3Cproquest_pubme%3E2102323887%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102323887&rft_id=info:pmid/30201846&rfr_iscdi=true