Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy

Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-09, Vol.8 (1), p.14264-11, Article 14264
Hauptverfasser: Ping, D. H., Guo, S. Q., Imura, M., Liu, X., Ohmura, T., Ohnuma, M., Lu, X., Abe, T., Onodera, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 14264
container_title Scientific reports
container_volume 8
creator Ping, D. H.
Guo, S. Q.
Imura, M.
Liu, X.
Ohmura, T.
Ohnuma, M.
Lu, X.
Abe, T.
Onodera, H.
description Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission electron microscopy and a novel lath formation mechanism has been proposed. Body-centered cubic {112}〈111〉-type twin can be retained inside laths in the samples quenched at temperatures from 1050 °C to 1200 °C. The formation mechanism of laths with a twin substructure has been explained based on the twin structure as an initial product of martensitic transformation. A detailed detwinning mechanism in the auto-tempering process has also been discussed, because auto-tempering is inevitable during the quenching of low-carbon Fe-C alloys. The driving force for the detwinning is the instability of ω-Fe(C) particles, which are located only at the twinning boundary region. The twin boundary can move through the ω ↔ bcc transition in which the ω phase region represents the twin boundary.
doi_str_mv 10.1038/s41598-018-32679-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6155323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111726323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-ed890b2b16d661cddd4132fa06c9eb8ad4439d41fe300e53f3fd7acc23c242e03</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhidG0za1f6ALQ-LGzSgcPu6wMTGNWpObdKNrwgBzLw0DFRib_nu5nbZWF7KAA-c5L-fk7bpzgt8TTIcPhREuhx6ToacgNrIXL7oTwIz3QAFePouPu7NSrnFbHCQj8qg7phh4u-KTzm913aMp5VlXnyKandnr6MtckI4W1Vsfo487pAsKB3LWubpYfHWoLGOpeTF1ya4gH1sBWkLNGoV02xudx6bnc9t0COnudfdq0qG4s4fztPvx5fP3i8t-e_X128WnbW84w7V3dpB4hJEIKwQx1lpGKEwaCyPdOGjLGJXtbXIUY8fpRCe70cYANcDAYXrafVx1b5Zxdta42FoK6ib71vudStqrvzPR79Uu_VKCcE6BNoF3DwI5_VxcqWr2xbgQdHRpKQoIASKBM9nQt_-g12nJsY13oMgGxCoIK2VyKiW76akZgtXBTLWaqZqZ6t5MJVrRm-djPJU8WtcAugKlpeLO5T9__0f2N4SmrLo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111726323</pqid></control><display><type>article</type><title>Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Ping, D. H. ; Guo, S. Q. ; Imura, M. ; Liu, X. ; Ohmura, T. ; Ohnuma, M. ; Lu, X. ; Abe, T. ; Onodera, H.</creator><creatorcontrib>Ping, D. H. ; Guo, S. Q. ; Imura, M. ; Liu, X. ; Ohmura, T. ; Ohnuma, M. ; Lu, X. ; Abe, T. ; Onodera, H.</creatorcontrib><description>Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission electron microscopy and a novel lath formation mechanism has been proposed. Body-centered cubic {112}〈111〉-type twin can be retained inside laths in the samples quenched at temperatures from 1050 °C to 1200 °C. The formation mechanism of laths with a twin substructure has been explained based on the twin structure as an initial product of martensitic transformation. A detailed detwinning mechanism in the auto-tempering process has also been discussed, because auto-tempering is inevitable during the quenching of low-carbon Fe-C alloys. The driving force for the detwinning is the instability of ω-Fe(C) particles, which are located only at the twinning boundary region. The twin boundary can move through the ω ↔ bcc transition in which the ω phase region represents the twin boundary.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-32679-6</identifier><identifier>PMID: 30250050</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/1026 ; 639/301/357/537 ; Alloys ; Carbon ; Humanities and Social Sciences ; Microstructure ; multidisciplinary ; Science ; Science (multidisciplinary) ; Transmission electron microscopy</subject><ispartof>Scientific reports, 2018-09, Vol.8 (1), p.14264-11, Article 14264</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-ed890b2b16d661cddd4132fa06c9eb8ad4439d41fe300e53f3fd7acc23c242e03</citedby><cites>FETCH-LOGICAL-c540t-ed890b2b16d661cddd4132fa06c9eb8ad4439d41fe300e53f3fd7acc23c242e03</cites><orcidid>0000-0002-2608-1473 ; 0000-0002-2933-1976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155323/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155323/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30250050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ping, D. H.</creatorcontrib><creatorcontrib>Guo, S. Q.</creatorcontrib><creatorcontrib>Imura, M.</creatorcontrib><creatorcontrib>Liu, X.</creatorcontrib><creatorcontrib>Ohmura, T.</creatorcontrib><creatorcontrib>Ohnuma, M.</creatorcontrib><creatorcontrib>Lu, X.</creatorcontrib><creatorcontrib>Abe, T.</creatorcontrib><creatorcontrib>Onodera, H.</creatorcontrib><title>Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission electron microscopy and a novel lath formation mechanism has been proposed. Body-centered cubic {112}〈111〉-type twin can be retained inside laths in the samples quenched at temperatures from 1050 °C to 1200 °C. The formation mechanism of laths with a twin substructure has been explained based on the twin structure as an initial product of martensitic transformation. A detailed detwinning mechanism in the auto-tempering process has also been discussed, because auto-tempering is inevitable during the quenching of low-carbon Fe-C alloys. The driving force for the detwinning is the instability of ω-Fe(C) particles, which are located only at the twinning boundary region. The twin boundary can move through the ω ↔ bcc transition in which the ω phase region represents the twin boundary.</description><subject>639/301/1023/1026</subject><subject>639/301/357/537</subject><subject>Alloys</subject><subject>Carbon</subject><subject>Humanities and Social Sciences</subject><subject>Microstructure</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transmission electron microscopy</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1vFSEUhidG0za1f6ALQ-LGzSgcPu6wMTGNWpObdKNrwgBzLw0DFRib_nu5nbZWF7KAA-c5L-fk7bpzgt8TTIcPhREuhx6ToacgNrIXL7oTwIz3QAFePouPu7NSrnFbHCQj8qg7phh4u-KTzm913aMp5VlXnyKandnr6MtckI4W1Vsfo487pAsKB3LWubpYfHWoLGOpeTF1ya4gH1sBWkLNGoV02xudx6bnc9t0COnudfdq0qG4s4fztPvx5fP3i8t-e_X128WnbW84w7V3dpB4hJEIKwQx1lpGKEwaCyPdOGjLGJXtbXIUY8fpRCe70cYANcDAYXrafVx1b5Zxdta42FoK6ib71vudStqrvzPR79Uu_VKCcE6BNoF3DwI5_VxcqWr2xbgQdHRpKQoIASKBM9nQt_-g12nJsY13oMgGxCoIK2VyKiW76akZgtXBTLWaqZqZ6t5MJVrRm-djPJU8WtcAugKlpeLO5T9__0f2N4SmrLo</recordid><startdate>20180924</startdate><enddate>20180924</enddate><creator>Ping, D. H.</creator><creator>Guo, S. Q.</creator><creator>Imura, M.</creator><creator>Liu, X.</creator><creator>Ohmura, T.</creator><creator>Ohnuma, M.</creator><creator>Lu, X.</creator><creator>Abe, T.</creator><creator>Onodera, H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2608-1473</orcidid><orcidid>https://orcid.org/0000-0002-2933-1976</orcidid></search><sort><creationdate>20180924</creationdate><title>Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy</title><author>Ping, D. H. ; Guo, S. Q. ; Imura, M. ; Liu, X. ; Ohmura, T. ; Ohnuma, M. ; Lu, X. ; Abe, T. ; Onodera, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-ed890b2b16d661cddd4132fa06c9eb8ad4439d41fe300e53f3fd7acc23c242e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/1023/1026</topic><topic>639/301/357/537</topic><topic>Alloys</topic><topic>Carbon</topic><topic>Humanities and Social Sciences</topic><topic>Microstructure</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ping, D. H.</creatorcontrib><creatorcontrib>Guo, S. Q.</creatorcontrib><creatorcontrib>Imura, M.</creatorcontrib><creatorcontrib>Liu, X.</creatorcontrib><creatorcontrib>Ohmura, T.</creatorcontrib><creatorcontrib>Ohnuma, M.</creatorcontrib><creatorcontrib>Lu, X.</creatorcontrib><creatorcontrib>Abe, T.</creatorcontrib><creatorcontrib>Onodera, H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ping, D. H.</au><au>Guo, S. Q.</au><au>Imura, M.</au><au>Liu, X.</au><au>Ohmura, T.</au><au>Ohnuma, M.</au><au>Lu, X.</au><au>Abe, T.</au><au>Onodera, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-09-24</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>14264</spage><epage>11</epage><pages>14264-11</pages><artnum>14264</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission electron microscopy and a novel lath formation mechanism has been proposed. Body-centered cubic {112}〈111〉-type twin can be retained inside laths in the samples quenched at temperatures from 1050 °C to 1200 °C. The formation mechanism of laths with a twin substructure has been explained based on the twin structure as an initial product of martensitic transformation. A detailed detwinning mechanism in the auto-tempering process has also been discussed, because auto-tempering is inevitable during the quenching of low-carbon Fe-C alloys. The driving force for the detwinning is the instability of ω-Fe(C) particles, which are located only at the twinning boundary region. The twin boundary can move through the ω ↔ bcc transition in which the ω phase region represents the twin boundary.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30250050</pmid><doi>10.1038/s41598-018-32679-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2608-1473</orcidid><orcidid>https://orcid.org/0000-0002-2933-1976</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-09, Vol.8 (1), p.14264-11, Article 14264
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6155323
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/301/1023/1026
639/301/357/537
Alloys
Carbon
Humanities and Social Sciences
Microstructure
multidisciplinary
Science
Science (multidisciplinary)
Transmission electron microscopy
title Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lath%20formation%20mechanisms%20and%20twinning%20as%20lath%20martensite%20substructures%20in%20an%20ultra%20low-carbon%20iron%20alloy&rft.jtitle=Scientific%20reports&rft.au=Ping,%20D.%20H.&rft.date=2018-09-24&rft.volume=8&rft.issue=1&rft.spage=14264&rft.epage=11&rft.pages=14264-11&rft.artnum=14264&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-32679-6&rft_dat=%3Cproquest_pubme%3E2111726323%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111726323&rft_id=info:pmid/30250050&rfr_iscdi=true