Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy
Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-09, Vol.8 (1), p.14264-11, Article 14264 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 14264 |
container_title | Scientific reports |
container_volume | 8 |
creator | Ping, D. H. Guo, S. Q. Imura, M. Liu, X. Ohmura, T. Ohnuma, M. Lu, X. Abe, T. Onodera, H. |
description | Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission electron microscopy and a novel lath formation mechanism has been proposed. Body-centered cubic {112}〈111〉-type twin can be retained inside laths in the samples quenched at temperatures from 1050 °C to 1200 °C. The formation mechanism of laths with a twin substructure has been explained based on the twin structure as an initial product of martensitic transformation. A detailed detwinning mechanism in the auto-tempering process has also been discussed, because auto-tempering is inevitable during the quenching of low-carbon Fe-C alloys. The driving force for the detwinning is the instability of ω-Fe(C) particles, which are located only at the twinning boundary region. The twin boundary can move through the ω ↔ bcc transition in which the ω phase region represents the twin boundary. |
doi_str_mv | 10.1038/s41598-018-32679-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6155323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111726323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-ed890b2b16d661cddd4132fa06c9eb8ad4439d41fe300e53f3fd7acc23c242e03</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhidG0za1f6ALQ-LGzSgcPu6wMTGNWpObdKNrwgBzLw0DFRib_nu5nbZWF7KAA-c5L-fk7bpzgt8TTIcPhREuhx6ToacgNrIXL7oTwIz3QAFePouPu7NSrnFbHCQj8qg7phh4u-KTzm913aMp5VlXnyKandnr6MtckI4W1Vsfo487pAsKB3LWubpYfHWoLGOpeTF1ya4gH1sBWkLNGoV02xudx6bnc9t0COnudfdq0qG4s4fztPvx5fP3i8t-e_X128WnbW84w7V3dpB4hJEIKwQx1lpGKEwaCyPdOGjLGJXtbXIUY8fpRCe70cYANcDAYXrafVx1b5Zxdta42FoK6ib71vudStqrvzPR79Uu_VKCcE6BNoF3DwI5_VxcqWr2xbgQdHRpKQoIASKBM9nQt_-g12nJsY13oMgGxCoIK2VyKiW76akZgtXBTLWaqZqZ6t5MJVrRm-djPJU8WtcAugKlpeLO5T9__0f2N4SmrLo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111726323</pqid></control><display><type>article</type><title>Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ping, D. H. ; Guo, S. Q. ; Imura, M. ; Liu, X. ; Ohmura, T. ; Ohnuma, M. ; Lu, X. ; Abe, T. ; Onodera, H.</creator><creatorcontrib>Ping, D. H. ; Guo, S. Q. ; Imura, M. ; Liu, X. ; Ohmura, T. ; Ohnuma, M. ; Lu, X. ; Abe, T. ; Onodera, H.</creatorcontrib><description>Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission electron microscopy and a novel lath formation mechanism has been proposed. Body-centered cubic {112}〈111〉-type twin can be retained inside laths in the samples quenched at temperatures from 1050 °C to 1200 °C. The formation mechanism of laths with a twin substructure has been explained based on the twin structure as an initial product of martensitic transformation. A detailed detwinning mechanism in the auto-tempering process has also been discussed, because auto-tempering is inevitable during the quenching of low-carbon Fe-C alloys. The driving force for the detwinning is the instability of ω-Fe(C) particles, which are located only at the twinning boundary region. The twin boundary can move through the ω ↔ bcc transition in which the ω phase region represents the twin boundary.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-32679-6</identifier><identifier>PMID: 30250050</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/1026 ; 639/301/357/537 ; Alloys ; Carbon ; Humanities and Social Sciences ; Microstructure ; multidisciplinary ; Science ; Science (multidisciplinary) ; Transmission electron microscopy</subject><ispartof>Scientific reports, 2018-09, Vol.8 (1), p.14264-11, Article 14264</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-ed890b2b16d661cddd4132fa06c9eb8ad4439d41fe300e53f3fd7acc23c242e03</citedby><cites>FETCH-LOGICAL-c540t-ed890b2b16d661cddd4132fa06c9eb8ad4439d41fe300e53f3fd7acc23c242e03</cites><orcidid>0000-0002-2608-1473 ; 0000-0002-2933-1976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155323/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155323/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30250050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ping, D. H.</creatorcontrib><creatorcontrib>Guo, S. Q.</creatorcontrib><creatorcontrib>Imura, M.</creatorcontrib><creatorcontrib>Liu, X.</creatorcontrib><creatorcontrib>Ohmura, T.</creatorcontrib><creatorcontrib>Ohnuma, M.</creatorcontrib><creatorcontrib>Lu, X.</creatorcontrib><creatorcontrib>Abe, T.</creatorcontrib><creatorcontrib>Onodera, H.</creatorcontrib><title>Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission electron microscopy and a novel lath formation mechanism has been proposed. Body-centered cubic {112}〈111〉-type twin can be retained inside laths in the samples quenched at temperatures from 1050 °C to 1200 °C. The formation mechanism of laths with a twin substructure has been explained based on the twin structure as an initial product of martensitic transformation. A detailed detwinning mechanism in the auto-tempering process has also been discussed, because auto-tempering is inevitable during the quenching of low-carbon Fe-C alloys. The driving force for the detwinning is the instability of ω-Fe(C) particles, which are located only at the twinning boundary region. The twin boundary can move through the ω ↔ bcc transition in which the ω phase region represents the twin boundary.</description><subject>639/301/1023/1026</subject><subject>639/301/357/537</subject><subject>Alloys</subject><subject>Carbon</subject><subject>Humanities and Social Sciences</subject><subject>Microstructure</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transmission electron microscopy</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1vFSEUhidG0za1f6ALQ-LGzSgcPu6wMTGNWpObdKNrwgBzLw0DFRib_nu5nbZWF7KAA-c5L-fk7bpzgt8TTIcPhREuhx6ToacgNrIXL7oTwIz3QAFePouPu7NSrnFbHCQj8qg7phh4u-KTzm913aMp5VlXnyKandnr6MtckI4W1Vsfo487pAsKB3LWubpYfHWoLGOpeTF1ya4gH1sBWkLNGoV02xudx6bnc9t0COnudfdq0qG4s4fztPvx5fP3i8t-e_X128WnbW84w7V3dpB4hJEIKwQx1lpGKEwaCyPdOGjLGJXtbXIUY8fpRCe70cYANcDAYXrafVx1b5Zxdta42FoK6ib71vudStqrvzPR79Uu_VKCcE6BNoF3DwI5_VxcqWr2xbgQdHRpKQoIASKBM9nQt_-g12nJsY13oMgGxCoIK2VyKiW76akZgtXBTLWaqZqZ6t5MJVrRm-djPJU8WtcAugKlpeLO5T9__0f2N4SmrLo</recordid><startdate>20180924</startdate><enddate>20180924</enddate><creator>Ping, D. H.</creator><creator>Guo, S. Q.</creator><creator>Imura, M.</creator><creator>Liu, X.</creator><creator>Ohmura, T.</creator><creator>Ohnuma, M.</creator><creator>Lu, X.</creator><creator>Abe, T.</creator><creator>Onodera, H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2608-1473</orcidid><orcidid>https://orcid.org/0000-0002-2933-1976</orcidid></search><sort><creationdate>20180924</creationdate><title>Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy</title><author>Ping, D. H. ; Guo, S. Q. ; Imura, M. ; Liu, X. ; Ohmura, T. ; Ohnuma, M. ; Lu, X. ; Abe, T. ; Onodera, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-ed890b2b16d661cddd4132fa06c9eb8ad4439d41fe300e53f3fd7acc23c242e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/1023/1026</topic><topic>639/301/357/537</topic><topic>Alloys</topic><topic>Carbon</topic><topic>Humanities and Social Sciences</topic><topic>Microstructure</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ping, D. H.</creatorcontrib><creatorcontrib>Guo, S. Q.</creatorcontrib><creatorcontrib>Imura, M.</creatorcontrib><creatorcontrib>Liu, X.</creatorcontrib><creatorcontrib>Ohmura, T.</creatorcontrib><creatorcontrib>Ohnuma, M.</creatorcontrib><creatorcontrib>Lu, X.</creatorcontrib><creatorcontrib>Abe, T.</creatorcontrib><creatorcontrib>Onodera, H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ping, D. H.</au><au>Guo, S. Q.</au><au>Imura, M.</au><au>Liu, X.</au><au>Ohmura, T.</au><au>Ohnuma, M.</au><au>Lu, X.</au><au>Abe, T.</au><au>Onodera, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-09-24</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>14264</spage><epage>11</epage><pages>14264-11</pages><artnum>14264</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission electron microscopy and a novel lath formation mechanism has been proposed. Body-centered cubic {112}〈111〉-type twin can be retained inside laths in the samples quenched at temperatures from 1050 °C to 1200 °C. The formation mechanism of laths with a twin substructure has been explained based on the twin structure as an initial product of martensitic transformation. A detailed detwinning mechanism in the auto-tempering process has also been discussed, because auto-tempering is inevitable during the quenching of low-carbon Fe-C alloys. The driving force for the detwinning is the instability of ω-Fe(C) particles, which are located only at the twinning boundary region. The twin boundary can move through the ω ↔ bcc transition in which the ω phase region represents the twin boundary.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30250050</pmid><doi>10.1038/s41598-018-32679-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2608-1473</orcidid><orcidid>https://orcid.org/0000-0002-2933-1976</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-09, Vol.8 (1), p.14264-11, Article 14264 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6155323 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/301/1023/1026 639/301/357/537 Alloys Carbon Humanities and Social Sciences Microstructure multidisciplinary Science Science (multidisciplinary) Transmission electron microscopy |
title | Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lath%20formation%20mechanisms%20and%20twinning%20as%20lath%20martensite%20substructures%20in%20an%20ultra%20low-carbon%20iron%20alloy&rft.jtitle=Scientific%20reports&rft.au=Ping,%20D.%20H.&rft.date=2018-09-24&rft.volume=8&rft.issue=1&rft.spage=14264&rft.epage=11&rft.pages=14264-11&rft.artnum=14264&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-32679-6&rft_dat=%3Cproquest_pubme%3E2111726323%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111726323&rft_id=info:pmid/30250050&rfr_iscdi=true |