Cone Photoreceptor Cell Segmentation and Diameter Measurement on Adaptive Optics Images Using Circularly Constrained Active Contour Model

Cone photoreceptor cells can be noninvasively imaged in the living human eye by using nonconfocal adaptive optics scanning ophthalmoscopy split detection. Existing metrics, such as cone density and spacing, are based on simplifying cone photoreceptors to single points. The purposes of this study wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative ophthalmology & visual science 2018-09, Vol.59 (11), p.4639-4652
Hauptverfasser: Liu, Jianfei, Jung, HaeWon, Dubra, Alfredo, Tam, Johnny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4652
container_issue 11
container_start_page 4639
container_title Investigative ophthalmology & visual science
container_volume 59
creator Liu, Jianfei
Jung, HaeWon
Dubra, Alfredo
Tam, Johnny
description Cone photoreceptor cells can be noninvasively imaged in the living human eye by using nonconfocal adaptive optics scanning ophthalmoscopy split detection. Existing metrics, such as cone density and spacing, are based on simplifying cone photoreceptors to single points. The purposes of this study were to introduce a computer-aided approach for segmentation of cone photoreceptors, to apply this technique to create a normal database of cone diameters, and to demonstrate its use in the context of existing metrics. Cone photoreceptor segmentation is achieved through a circularly constrained active contour model (CCACM). Circular templates and image gradients attract active contours toward cone photoreceptor boundaries. Automated segmentation from in vivo human subject data was compared to ground truth established by manual segmentation. Cone diameters computed from curated data (automated segmentation followed by manual removal of errors) were compared with histology and published data. Overall, there was good agreement between automated and manual segmentations and between diameter measurements (n = 5191 cones) and published histologic data across retinal eccentricities ranging from 1.35 to 6.35 mm (temporal). Interestingly, cone diameter was correlated to both cone density and cone spacing (negatively and positively, respectively; P < 0.01 for both). Application of the proposed automated segmentation to images from a patient with late-onset retinal degeneration revealed the presence of enlarged cones above individual reticular pseudodrusen (average 23.0% increase, P < 0.05). CCACM can accurately segment cone photoreceptors on split detection images across a range of eccentricities. Metrics derived from this automated segmentation of adaptive optics retinal images can provide new insights into retinal diseases.
doi_str_mv 10.1167/iovs.18-24734
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6154284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127199387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-2d4a3d9221dd43b680c9a41b85719a005c7efd23cdd64fe6b8e60feb2c6c22493</originalsourceid><addsrcrecordid>eNpVUclKBDEUDKK4H71Kjl5as_V2EYZ2BUVBPYd08nqMdHfGJD3gJ_jXZtzQUz1SlXpLIXRAyTGlRXli3TIc0ypjouRiDW3TPGdZXlZ8_U-9hXZCeCGEUcrIJtrihJes5HwbvTduBHz_7KLzoGGRADfQ9_gB5gOMUUXrRqxGg8-sGiCCx7egwuRhxeLEzYxaRLsEfJdAB3w9qDkE_BTsOMeN9Xrqle_fcGoUold2BINn-vNHeopuSo7OQL-HNjrVB9j_xl30dHH-2FxlN3eX183sJtMi5zFjRihuasaoMYK3RUV0rQRtq7yktSIk1yV0hnFtTCE6KNoKCtJBy3ShGRM130WnX76LqR3A6LSGV71ceDso_yadsvI_M9pnOXdLWdBcsEokg6NvA-9eJwhRDjbodDM1gpuCZJSlUWpelUmafUm1dyF46H7bUCJX8clVfJJW8jO-pD_8O9uv-icv_gGA_pqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127199387</pqid></control><display><type>article</type><title>Cone Photoreceptor Cell Segmentation and Diameter Measurement on Adaptive Optics Images Using Circularly Constrained Active Contour Model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Liu, Jianfei ; Jung, HaeWon ; Dubra, Alfredo ; Tam, Johnny</creator><creatorcontrib>Liu, Jianfei ; Jung, HaeWon ; Dubra, Alfredo ; Tam, Johnny</creatorcontrib><description>Cone photoreceptor cells can be noninvasively imaged in the living human eye by using nonconfocal adaptive optics scanning ophthalmoscopy split detection. Existing metrics, such as cone density and spacing, are based on simplifying cone photoreceptors to single points. The purposes of this study were to introduce a computer-aided approach for segmentation of cone photoreceptors, to apply this technique to create a normal database of cone diameters, and to demonstrate its use in the context of existing metrics. Cone photoreceptor segmentation is achieved through a circularly constrained active contour model (CCACM). Circular templates and image gradients attract active contours toward cone photoreceptor boundaries. Automated segmentation from in vivo human subject data was compared to ground truth established by manual segmentation. Cone diameters computed from curated data (automated segmentation followed by manual removal of errors) were compared with histology and published data. Overall, there was good agreement between automated and manual segmentations and between diameter measurements (n = 5191 cones) and published histologic data across retinal eccentricities ranging from 1.35 to 6.35 mm (temporal). Interestingly, cone diameter was correlated to both cone density and cone spacing (negatively and positively, respectively; P &lt; 0.01 for both). Application of the proposed automated segmentation to images from a patient with late-onset retinal degeneration revealed the presence of enlarged cones above individual reticular pseudodrusen (average 23.0% increase, P &lt; 0.05). CCACM can accurately segment cone photoreceptors on split detection images across a range of eccentricities. Metrics derived from this automated segmentation of adaptive optics retinal images can provide new insights into retinal diseases.</description><identifier>ISSN: 1552-5783</identifier><identifier>ISSN: 0146-0404</identifier><identifier>EISSN: 1552-5783</identifier><identifier>DOI: 10.1167/iovs.18-24734</identifier><identifier>PMID: 30372733</identifier><language>eng</language><publisher>United States: The Association for Research in Vision and Ophthalmology</publisher><subject>Adult ; Algorithms ; Female ; Humans ; Male ; Middle Aged ; Multidisciplinary Ophthalmic Imaging ; Ophthalmoscopy - methods ; Optics and Photonics ; Retinal Cone Photoreceptor Cells - cytology ; Retinal Cone Photoreceptor Cells - pathology ; Retinal Degeneration - diagnosis ; Tomography, Optical Coherence ; Young Adult</subject><ispartof>Investigative ophthalmology &amp; visual science, 2018-09, Vol.59 (11), p.4639-4652</ispartof><rights>Copyright 2018 The Authors 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-2d4a3d9221dd43b680c9a41b85719a005c7efd23cdd64fe6b8e60feb2c6c22493</citedby><cites>FETCH-LOGICAL-c453t-2d4a3d9221dd43b680c9a41b85719a005c7efd23cdd64fe6b8e60feb2c6c22493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154284/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154284/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30372733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jianfei</creatorcontrib><creatorcontrib>Jung, HaeWon</creatorcontrib><creatorcontrib>Dubra, Alfredo</creatorcontrib><creatorcontrib>Tam, Johnny</creatorcontrib><title>Cone Photoreceptor Cell Segmentation and Diameter Measurement on Adaptive Optics Images Using Circularly Constrained Active Contour Model</title><title>Investigative ophthalmology &amp; visual science</title><addtitle>Invest Ophthalmol Vis Sci</addtitle><description>Cone photoreceptor cells can be noninvasively imaged in the living human eye by using nonconfocal adaptive optics scanning ophthalmoscopy split detection. Existing metrics, such as cone density and spacing, are based on simplifying cone photoreceptors to single points. The purposes of this study were to introduce a computer-aided approach for segmentation of cone photoreceptors, to apply this technique to create a normal database of cone diameters, and to demonstrate its use in the context of existing metrics. Cone photoreceptor segmentation is achieved through a circularly constrained active contour model (CCACM). Circular templates and image gradients attract active contours toward cone photoreceptor boundaries. Automated segmentation from in vivo human subject data was compared to ground truth established by manual segmentation. Cone diameters computed from curated data (automated segmentation followed by manual removal of errors) were compared with histology and published data. Overall, there was good agreement between automated and manual segmentations and between diameter measurements (n = 5191 cones) and published histologic data across retinal eccentricities ranging from 1.35 to 6.35 mm (temporal). Interestingly, cone diameter was correlated to both cone density and cone spacing (negatively and positively, respectively; P &lt; 0.01 for both). Application of the proposed automated segmentation to images from a patient with late-onset retinal degeneration revealed the presence of enlarged cones above individual reticular pseudodrusen (average 23.0% increase, P &lt; 0.05). CCACM can accurately segment cone photoreceptors on split detection images across a range of eccentricities. Metrics derived from this automated segmentation of adaptive optics retinal images can provide new insights into retinal diseases.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multidisciplinary Ophthalmic Imaging</subject><subject>Ophthalmoscopy - methods</subject><subject>Optics and Photonics</subject><subject>Retinal Cone Photoreceptor Cells - cytology</subject><subject>Retinal Cone Photoreceptor Cells - pathology</subject><subject>Retinal Degeneration - diagnosis</subject><subject>Tomography, Optical Coherence</subject><subject>Young Adult</subject><issn>1552-5783</issn><issn>0146-0404</issn><issn>1552-5783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUclKBDEUDKK4H71Kjl5as_V2EYZ2BUVBPYd08nqMdHfGJD3gJ_jXZtzQUz1SlXpLIXRAyTGlRXli3TIc0ypjouRiDW3TPGdZXlZ8_U-9hXZCeCGEUcrIJtrihJes5HwbvTduBHz_7KLzoGGRADfQ9_gB5gOMUUXrRqxGg8-sGiCCx7egwuRhxeLEzYxaRLsEfJdAB3w9qDkE_BTsOMeN9Xrqle_fcGoUold2BINn-vNHeopuSo7OQL-HNjrVB9j_xl30dHH-2FxlN3eX183sJtMi5zFjRihuasaoMYK3RUV0rQRtq7yktSIk1yV0hnFtTCE6KNoKCtJBy3ShGRM130WnX76LqR3A6LSGV71ceDso_yadsvI_M9pnOXdLWdBcsEokg6NvA-9eJwhRDjbodDM1gpuCZJSlUWpelUmafUm1dyF46H7bUCJX8clVfJJW8jO-pD_8O9uv-icv_gGA_pqw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Liu, Jianfei</creator><creator>Jung, HaeWon</creator><creator>Dubra, Alfredo</creator><creator>Tam, Johnny</creator><general>The Association for Research in Vision and Ophthalmology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180901</creationdate><title>Cone Photoreceptor Cell Segmentation and Diameter Measurement on Adaptive Optics Images Using Circularly Constrained Active Contour Model</title><author>Liu, Jianfei ; Jung, HaeWon ; Dubra, Alfredo ; Tam, Johnny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-2d4a3d9221dd43b680c9a41b85719a005c7efd23cdd64fe6b8e60feb2c6c22493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multidisciplinary Ophthalmic Imaging</topic><topic>Ophthalmoscopy - methods</topic><topic>Optics and Photonics</topic><topic>Retinal Cone Photoreceptor Cells - cytology</topic><topic>Retinal Cone Photoreceptor Cells - pathology</topic><topic>Retinal Degeneration - diagnosis</topic><topic>Tomography, Optical Coherence</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jianfei</creatorcontrib><creatorcontrib>Jung, HaeWon</creatorcontrib><creatorcontrib>Dubra, Alfredo</creatorcontrib><creatorcontrib>Tam, Johnny</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Investigative ophthalmology &amp; visual science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jianfei</au><au>Jung, HaeWon</au><au>Dubra, Alfredo</au><au>Tam, Johnny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cone Photoreceptor Cell Segmentation and Diameter Measurement on Adaptive Optics Images Using Circularly Constrained Active Contour Model</atitle><jtitle>Investigative ophthalmology &amp; visual science</jtitle><addtitle>Invest Ophthalmol Vis Sci</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>59</volume><issue>11</issue><spage>4639</spage><epage>4652</epage><pages>4639-4652</pages><issn>1552-5783</issn><issn>0146-0404</issn><eissn>1552-5783</eissn><abstract>Cone photoreceptor cells can be noninvasively imaged in the living human eye by using nonconfocal adaptive optics scanning ophthalmoscopy split detection. Existing metrics, such as cone density and spacing, are based on simplifying cone photoreceptors to single points. The purposes of this study were to introduce a computer-aided approach for segmentation of cone photoreceptors, to apply this technique to create a normal database of cone diameters, and to demonstrate its use in the context of existing metrics. Cone photoreceptor segmentation is achieved through a circularly constrained active contour model (CCACM). Circular templates and image gradients attract active contours toward cone photoreceptor boundaries. Automated segmentation from in vivo human subject data was compared to ground truth established by manual segmentation. Cone diameters computed from curated data (automated segmentation followed by manual removal of errors) were compared with histology and published data. Overall, there was good agreement between automated and manual segmentations and between diameter measurements (n = 5191 cones) and published histologic data across retinal eccentricities ranging from 1.35 to 6.35 mm (temporal). Interestingly, cone diameter was correlated to both cone density and cone spacing (negatively and positively, respectively; P &lt; 0.01 for both). Application of the proposed automated segmentation to images from a patient with late-onset retinal degeneration revealed the presence of enlarged cones above individual reticular pseudodrusen (average 23.0% increase, P &lt; 0.05). CCACM can accurately segment cone photoreceptors on split detection images across a range of eccentricities. Metrics derived from this automated segmentation of adaptive optics retinal images can provide new insights into retinal diseases.</abstract><cop>United States</cop><pub>The Association for Research in Vision and Ophthalmology</pub><pmid>30372733</pmid><doi>10.1167/iovs.18-24734</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-5783
ispartof Investigative ophthalmology & visual science, 2018-09, Vol.59 (11), p.4639-4652
issn 1552-5783
0146-0404
1552-5783
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6154284
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adult
Algorithms
Female
Humans
Male
Middle Aged
Multidisciplinary Ophthalmic Imaging
Ophthalmoscopy - methods
Optics and Photonics
Retinal Cone Photoreceptor Cells - cytology
Retinal Cone Photoreceptor Cells - pathology
Retinal Degeneration - diagnosis
Tomography, Optical Coherence
Young Adult
title Cone Photoreceptor Cell Segmentation and Diameter Measurement on Adaptive Optics Images Using Circularly Constrained Active Contour Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cone%20Photoreceptor%20Cell%20Segmentation%20and%20Diameter%20Measurement%20on%20Adaptive%20Optics%20Images%20Using%20Circularly%20Constrained%20Active%20Contour%20Model&rft.jtitle=Investigative%20ophthalmology%20&%20visual%20science&rft.au=Liu,%20Jianfei&rft.date=2018-09-01&rft.volume=59&rft.issue=11&rft.spage=4639&rft.epage=4652&rft.pages=4639-4652&rft.issn=1552-5783&rft.eissn=1552-5783&rft_id=info:doi/10.1167/iovs.18-24734&rft_dat=%3Cproquest_pubme%3E2127199387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127199387&rft_id=info:pmid/30372733&rfr_iscdi=true