Cone Photoreceptor Cell Segmentation and Diameter Measurement on Adaptive Optics Images Using Circularly Constrained Active Contour Model
Cone photoreceptor cells can be noninvasively imaged in the living human eye by using nonconfocal adaptive optics scanning ophthalmoscopy split detection. Existing metrics, such as cone density and spacing, are based on simplifying cone photoreceptors to single points. The purposes of this study wer...
Gespeichert in:
Veröffentlicht in: | Investigative ophthalmology & visual science 2018-09, Vol.59 (11), p.4639-4652 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4652 |
---|---|
container_issue | 11 |
container_start_page | 4639 |
container_title | Investigative ophthalmology & visual science |
container_volume | 59 |
creator | Liu, Jianfei Jung, HaeWon Dubra, Alfredo Tam, Johnny |
description | Cone photoreceptor cells can be noninvasively imaged in the living human eye by using nonconfocal adaptive optics scanning ophthalmoscopy split detection. Existing metrics, such as cone density and spacing, are based on simplifying cone photoreceptors to single points. The purposes of this study were to introduce a computer-aided approach for segmentation of cone photoreceptors, to apply this technique to create a normal database of cone diameters, and to demonstrate its use in the context of existing metrics.
Cone photoreceptor segmentation is achieved through a circularly constrained active contour model (CCACM). Circular templates and image gradients attract active contours toward cone photoreceptor boundaries. Automated segmentation from in vivo human subject data was compared to ground truth established by manual segmentation. Cone diameters computed from curated data (automated segmentation followed by manual removal of errors) were compared with histology and published data.
Overall, there was good agreement between automated and manual segmentations and between diameter measurements (n = 5191 cones) and published histologic data across retinal eccentricities ranging from 1.35 to 6.35 mm (temporal). Interestingly, cone diameter was correlated to both cone density and cone spacing (negatively and positively, respectively; P < 0.01 for both). Application of the proposed automated segmentation to images from a patient with late-onset retinal degeneration revealed the presence of enlarged cones above individual reticular pseudodrusen (average 23.0% increase, P < 0.05).
CCACM can accurately segment cone photoreceptors on split detection images across a range of eccentricities. Metrics derived from this automated segmentation of adaptive optics retinal images can provide new insights into retinal diseases. |
doi_str_mv | 10.1167/iovs.18-24734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6154284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127199387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-2d4a3d9221dd43b680c9a41b85719a005c7efd23cdd64fe6b8e60feb2c6c22493</originalsourceid><addsrcrecordid>eNpVUclKBDEUDKK4H71Kjl5as_V2EYZ2BUVBPYd08nqMdHfGJD3gJ_jXZtzQUz1SlXpLIXRAyTGlRXli3TIc0ypjouRiDW3TPGdZXlZ8_U-9hXZCeCGEUcrIJtrihJes5HwbvTduBHz_7KLzoGGRADfQ9_gB5gOMUUXrRqxGg8-sGiCCx7egwuRhxeLEzYxaRLsEfJdAB3w9qDkE_BTsOMeN9Xrqle_fcGoUold2BINn-vNHeopuSo7OQL-HNjrVB9j_xl30dHH-2FxlN3eX183sJtMi5zFjRihuasaoMYK3RUV0rQRtq7yktSIk1yV0hnFtTCE6KNoKCtJBy3ShGRM130WnX76LqR3A6LSGV71ceDso_yadsvI_M9pnOXdLWdBcsEokg6NvA-9eJwhRDjbodDM1gpuCZJSlUWpelUmafUm1dyF46H7bUCJX8clVfJJW8jO-pD_8O9uv-icv_gGA_pqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127199387</pqid></control><display><type>article</type><title>Cone Photoreceptor Cell Segmentation and Diameter Measurement on Adaptive Optics Images Using Circularly Constrained Active Contour Model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Liu, Jianfei ; Jung, HaeWon ; Dubra, Alfredo ; Tam, Johnny</creator><creatorcontrib>Liu, Jianfei ; Jung, HaeWon ; Dubra, Alfredo ; Tam, Johnny</creatorcontrib><description>Cone photoreceptor cells can be noninvasively imaged in the living human eye by using nonconfocal adaptive optics scanning ophthalmoscopy split detection. Existing metrics, such as cone density and spacing, are based on simplifying cone photoreceptors to single points. The purposes of this study were to introduce a computer-aided approach for segmentation of cone photoreceptors, to apply this technique to create a normal database of cone diameters, and to demonstrate its use in the context of existing metrics.
Cone photoreceptor segmentation is achieved through a circularly constrained active contour model (CCACM). Circular templates and image gradients attract active contours toward cone photoreceptor boundaries. Automated segmentation from in vivo human subject data was compared to ground truth established by manual segmentation. Cone diameters computed from curated data (automated segmentation followed by manual removal of errors) were compared with histology and published data.
Overall, there was good agreement between automated and manual segmentations and between diameter measurements (n = 5191 cones) and published histologic data across retinal eccentricities ranging from 1.35 to 6.35 mm (temporal). Interestingly, cone diameter was correlated to both cone density and cone spacing (negatively and positively, respectively; P < 0.01 for both). Application of the proposed automated segmentation to images from a patient with late-onset retinal degeneration revealed the presence of enlarged cones above individual reticular pseudodrusen (average 23.0% increase, P < 0.05).
CCACM can accurately segment cone photoreceptors on split detection images across a range of eccentricities. Metrics derived from this automated segmentation of adaptive optics retinal images can provide new insights into retinal diseases.</description><identifier>ISSN: 1552-5783</identifier><identifier>ISSN: 0146-0404</identifier><identifier>EISSN: 1552-5783</identifier><identifier>DOI: 10.1167/iovs.18-24734</identifier><identifier>PMID: 30372733</identifier><language>eng</language><publisher>United States: The Association for Research in Vision and Ophthalmology</publisher><subject>Adult ; Algorithms ; Female ; Humans ; Male ; Middle Aged ; Multidisciplinary Ophthalmic Imaging ; Ophthalmoscopy - methods ; Optics and Photonics ; Retinal Cone Photoreceptor Cells - cytology ; Retinal Cone Photoreceptor Cells - pathology ; Retinal Degeneration - diagnosis ; Tomography, Optical Coherence ; Young Adult</subject><ispartof>Investigative ophthalmology & visual science, 2018-09, Vol.59 (11), p.4639-4652</ispartof><rights>Copyright 2018 The Authors 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-2d4a3d9221dd43b680c9a41b85719a005c7efd23cdd64fe6b8e60feb2c6c22493</citedby><cites>FETCH-LOGICAL-c453t-2d4a3d9221dd43b680c9a41b85719a005c7efd23cdd64fe6b8e60feb2c6c22493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154284/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154284/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30372733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jianfei</creatorcontrib><creatorcontrib>Jung, HaeWon</creatorcontrib><creatorcontrib>Dubra, Alfredo</creatorcontrib><creatorcontrib>Tam, Johnny</creatorcontrib><title>Cone Photoreceptor Cell Segmentation and Diameter Measurement on Adaptive Optics Images Using Circularly Constrained Active Contour Model</title><title>Investigative ophthalmology & visual science</title><addtitle>Invest Ophthalmol Vis Sci</addtitle><description>Cone photoreceptor cells can be noninvasively imaged in the living human eye by using nonconfocal adaptive optics scanning ophthalmoscopy split detection. Existing metrics, such as cone density and spacing, are based on simplifying cone photoreceptors to single points. The purposes of this study were to introduce a computer-aided approach for segmentation of cone photoreceptors, to apply this technique to create a normal database of cone diameters, and to demonstrate its use in the context of existing metrics.
Cone photoreceptor segmentation is achieved through a circularly constrained active contour model (CCACM). Circular templates and image gradients attract active contours toward cone photoreceptor boundaries. Automated segmentation from in vivo human subject data was compared to ground truth established by manual segmentation. Cone diameters computed from curated data (automated segmentation followed by manual removal of errors) were compared with histology and published data.
Overall, there was good agreement between automated and manual segmentations and between diameter measurements (n = 5191 cones) and published histologic data across retinal eccentricities ranging from 1.35 to 6.35 mm (temporal). Interestingly, cone diameter was correlated to both cone density and cone spacing (negatively and positively, respectively; P < 0.01 for both). Application of the proposed automated segmentation to images from a patient with late-onset retinal degeneration revealed the presence of enlarged cones above individual reticular pseudodrusen (average 23.0% increase, P < 0.05).
CCACM can accurately segment cone photoreceptors on split detection images across a range of eccentricities. Metrics derived from this automated segmentation of adaptive optics retinal images can provide new insights into retinal diseases.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multidisciplinary Ophthalmic Imaging</subject><subject>Ophthalmoscopy - methods</subject><subject>Optics and Photonics</subject><subject>Retinal Cone Photoreceptor Cells - cytology</subject><subject>Retinal Cone Photoreceptor Cells - pathology</subject><subject>Retinal Degeneration - diagnosis</subject><subject>Tomography, Optical Coherence</subject><subject>Young Adult</subject><issn>1552-5783</issn><issn>0146-0404</issn><issn>1552-5783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUclKBDEUDKK4H71Kjl5as_V2EYZ2BUVBPYd08nqMdHfGJD3gJ_jXZtzQUz1SlXpLIXRAyTGlRXli3TIc0ypjouRiDW3TPGdZXlZ8_U-9hXZCeCGEUcrIJtrihJes5HwbvTduBHz_7KLzoGGRADfQ9_gB5gOMUUXrRqxGg8-sGiCCx7egwuRhxeLEzYxaRLsEfJdAB3w9qDkE_BTsOMeN9Xrqle_fcGoUold2BINn-vNHeopuSo7OQL-HNjrVB9j_xl30dHH-2FxlN3eX183sJtMi5zFjRihuasaoMYK3RUV0rQRtq7yktSIk1yV0hnFtTCE6KNoKCtJBy3ShGRM130WnX76LqR3A6LSGV71ceDso_yadsvI_M9pnOXdLWdBcsEokg6NvA-9eJwhRDjbodDM1gpuCZJSlUWpelUmafUm1dyF46H7bUCJX8clVfJJW8jO-pD_8O9uv-icv_gGA_pqw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Liu, Jianfei</creator><creator>Jung, HaeWon</creator><creator>Dubra, Alfredo</creator><creator>Tam, Johnny</creator><general>The Association for Research in Vision and Ophthalmology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180901</creationdate><title>Cone Photoreceptor Cell Segmentation and Diameter Measurement on Adaptive Optics Images Using Circularly Constrained Active Contour Model</title><author>Liu, Jianfei ; Jung, HaeWon ; Dubra, Alfredo ; Tam, Johnny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-2d4a3d9221dd43b680c9a41b85719a005c7efd23cdd64fe6b8e60feb2c6c22493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multidisciplinary Ophthalmic Imaging</topic><topic>Ophthalmoscopy - methods</topic><topic>Optics and Photonics</topic><topic>Retinal Cone Photoreceptor Cells - cytology</topic><topic>Retinal Cone Photoreceptor Cells - pathology</topic><topic>Retinal Degeneration - diagnosis</topic><topic>Tomography, Optical Coherence</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jianfei</creatorcontrib><creatorcontrib>Jung, HaeWon</creatorcontrib><creatorcontrib>Dubra, Alfredo</creatorcontrib><creatorcontrib>Tam, Johnny</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Investigative ophthalmology & visual science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jianfei</au><au>Jung, HaeWon</au><au>Dubra, Alfredo</au><au>Tam, Johnny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cone Photoreceptor Cell Segmentation and Diameter Measurement on Adaptive Optics Images Using Circularly Constrained Active Contour Model</atitle><jtitle>Investigative ophthalmology & visual science</jtitle><addtitle>Invest Ophthalmol Vis Sci</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>59</volume><issue>11</issue><spage>4639</spage><epage>4652</epage><pages>4639-4652</pages><issn>1552-5783</issn><issn>0146-0404</issn><eissn>1552-5783</eissn><abstract>Cone photoreceptor cells can be noninvasively imaged in the living human eye by using nonconfocal adaptive optics scanning ophthalmoscopy split detection. Existing metrics, such as cone density and spacing, are based on simplifying cone photoreceptors to single points. The purposes of this study were to introduce a computer-aided approach for segmentation of cone photoreceptors, to apply this technique to create a normal database of cone diameters, and to demonstrate its use in the context of existing metrics.
Cone photoreceptor segmentation is achieved through a circularly constrained active contour model (CCACM). Circular templates and image gradients attract active contours toward cone photoreceptor boundaries. Automated segmentation from in vivo human subject data was compared to ground truth established by manual segmentation. Cone diameters computed from curated data (automated segmentation followed by manual removal of errors) were compared with histology and published data.
Overall, there was good agreement between automated and manual segmentations and between diameter measurements (n = 5191 cones) and published histologic data across retinal eccentricities ranging from 1.35 to 6.35 mm (temporal). Interestingly, cone diameter was correlated to both cone density and cone spacing (negatively and positively, respectively; P < 0.01 for both). Application of the proposed automated segmentation to images from a patient with late-onset retinal degeneration revealed the presence of enlarged cones above individual reticular pseudodrusen (average 23.0% increase, P < 0.05).
CCACM can accurately segment cone photoreceptors on split detection images across a range of eccentricities. Metrics derived from this automated segmentation of adaptive optics retinal images can provide new insights into retinal diseases.</abstract><cop>United States</cop><pub>The Association for Research in Vision and Ophthalmology</pub><pmid>30372733</pmid><doi>10.1167/iovs.18-24734</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-5783 |
ispartof | Investigative ophthalmology & visual science, 2018-09, Vol.59 (11), p.4639-4652 |
issn | 1552-5783 0146-0404 1552-5783 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6154284 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adult Algorithms Female Humans Male Middle Aged Multidisciplinary Ophthalmic Imaging Ophthalmoscopy - methods Optics and Photonics Retinal Cone Photoreceptor Cells - cytology Retinal Cone Photoreceptor Cells - pathology Retinal Degeneration - diagnosis Tomography, Optical Coherence Young Adult |
title | Cone Photoreceptor Cell Segmentation and Diameter Measurement on Adaptive Optics Images Using Circularly Constrained Active Contour Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cone%20Photoreceptor%20Cell%20Segmentation%20and%20Diameter%20Measurement%20on%20Adaptive%20Optics%20Images%20Using%20Circularly%20Constrained%20Active%20Contour%20Model&rft.jtitle=Investigative%20ophthalmology%20&%20visual%20science&rft.au=Liu,%20Jianfei&rft.date=2018-09-01&rft.volume=59&rft.issue=11&rft.spage=4639&rft.epage=4652&rft.pages=4639-4652&rft.issn=1552-5783&rft.eissn=1552-5783&rft_id=info:doi/10.1167/iovs.18-24734&rft_dat=%3Cproquest_pubme%3E2127199387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127199387&rft_id=info:pmid/30372733&rfr_iscdi=true |