Using disruptive insertional mutagenesis to identify the in situ structure‐function landscape of the Shigella translocator protein IpaB

Bacterial type III secretion systems (T3SS) are used to inject proteins into mammalian cells to subvert cellular functions. The Shigella T3SS apparatus (T3SA) is comprised of a basal body, cytoplasmic sorting platform and exposed needle with needle “tip complex” (TC). TC maturation occurs when the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2018-08, Vol.27 (8), p.1392-1406
Hauptverfasser: Barta, Michael L., Tachiyama, Shoichi, Muthuramalingam, Meenakumari, Arizmendi, Olivia, Villanueva, Cecilia E., Ramyar, Kasra X., Geisbrecht, Brian V., Lovell, Scott, Battaile, Kevin P., Picking, Wendy L., Picking, William D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1406
container_issue 8
container_start_page 1392
container_title Protein science
container_volume 27
creator Barta, Michael L.
Tachiyama, Shoichi
Muthuramalingam, Meenakumari
Arizmendi, Olivia
Villanueva, Cecilia E.
Ramyar, Kasra X.
Geisbrecht, Brian V.
Lovell, Scott
Battaile, Kevin P.
Picking, Wendy L.
Picking, William D.
description Bacterial type III secretion systems (T3SS) are used to inject proteins into mammalian cells to subvert cellular functions. The Shigella T3SS apparatus (T3SA) is comprised of a basal body, cytoplasmic sorting platform and exposed needle with needle “tip complex” (TC). TC maturation occurs when the translocator protein IpaB is recruited to the needle tip where both IpaD and IpaB control secretion induction. IpaB insertion into the host membrane is the first step of translocon pore formation and secretion induction. We employed disruptive insertional mutagenesis, using bacteriophage T4 lysozyme (T4L), within predicted IpaB loops to show how topological features affect TC functions (secretion control, translocon formation and effector secretion). Insertions within the N‐terminal half of IpaB were most likely to result in a loss of steady‐state secretion control, however, all but the two that were not recognized by the T3SA retained nearly wild‐type hemolysis (translocon formation) and invasiveness levels (effector secretion). In contrast, all but one insertion in the C‐terminal half of IpaB maintained secretion control but were impaired for hemolysis and invasion. These nature of the data suggest the latter mutants are defective in a post‐secretion event, most likely due to impaired interactions with the second translocator protein IpaC. Intriguingly, only two insertion mutants displayed readily detectable T4L on the bacterial surface. The data create a picture in which the makeup and structure of a functional T3SA TC is highly amenable to physical perturbation, indicating that the tertiary structure of IpaB within the TC is more plastic than previously realized.
doi_str_mv 10.1002/pro.3428
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6153406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2028952948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4388-4eee2a41ff273a3fb03af731f5cc55612a89c77cf631c6c61c36103ffd3f43ee3</originalsourceid><addsrcrecordid>eNp1kUtrFTEYhoMo9lgFf4EE3LiZmttkMhvBFi-FQkUtuAtp5ss5KXMmYy6Vs3Przt_oLzHT1noBVyHkycP7fS9Cjyk5oISw53MMB1wwdQetqJB9o3r56S5akV7SRnGp9tCDlC4IIYIyfh_tsV52rFdkhb6dJT-t8eBTLHP2l4D9lCBmHyYz4m3JZg0TJJ9wDtgPMGXvdjhvFg4nnwtOORabS4QfX7-7MtnlKx7NNCRrZsDBXdEfNn4N42hwjmZKY7Amh4hr7gxVdDybw4fonjNjgkc35z46e_3q49Hb5uT0zfHRy5PGCq5UIwCAGUGdYx033J0TblzHqWutbVtJmVG97TrrJKdWWkktl5Rw5wbuBAfg--jFtXcu51sYbB0pmlHP0W9N3OlgvP77ZfIbvQ6XWtKWCyKr4NmNIIbPBVLWW5_sMtwEoSTNCFN9y3qhKvr0H_QilFg3WylKqejajqjfQhtDShHcbRhK9NJvvQe99FvRJ3-GvwV_FVqB5hr44kfY_Vek370_vRL-BIr3tM8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111475708</pqid></control><display><type>article</type><title>Using disruptive insertional mutagenesis to identify the in situ structure‐function landscape of the Shigella translocator protein IpaB</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Barta, Michael L. ; Tachiyama, Shoichi ; Muthuramalingam, Meenakumari ; Arizmendi, Olivia ; Villanueva, Cecilia E. ; Ramyar, Kasra X. ; Geisbrecht, Brian V. ; Lovell, Scott ; Battaile, Kevin P. ; Picking, Wendy L. ; Picking, William D.</creator><creatorcontrib>Barta, Michael L. ; Tachiyama, Shoichi ; Muthuramalingam, Meenakumari ; Arizmendi, Olivia ; Villanueva, Cecilia E. ; Ramyar, Kasra X. ; Geisbrecht, Brian V. ; Lovell, Scott ; Battaile, Kevin P. ; Picking, Wendy L. ; Picking, William D.</creatorcontrib><description>Bacterial type III secretion systems (T3SS) are used to inject proteins into mammalian cells to subvert cellular functions. The Shigella T3SS apparatus (T3SA) is comprised of a basal body, cytoplasmic sorting platform and exposed needle with needle “tip complex” (TC). TC maturation occurs when the translocator protein IpaB is recruited to the needle tip where both IpaD and IpaB control secretion induction. IpaB insertion into the host membrane is the first step of translocon pore formation and secretion induction. We employed disruptive insertional mutagenesis, using bacteriophage T4 lysozyme (T4L), within predicted IpaB loops to show how topological features affect TC functions (secretion control, translocon formation and effector secretion). Insertions within the N‐terminal half of IpaB were most likely to result in a loss of steady‐state secretion control, however, all but the two that were not recognized by the T3SA retained nearly wild‐type hemolysis (translocon formation) and invasiveness levels (effector secretion). In contrast, all but one insertion in the C‐terminal half of IpaB maintained secretion control but were impaired for hemolysis and invasion. These nature of the data suggest the latter mutants are defective in a post‐secretion event, most likely due to impaired interactions with the second translocator protein IpaC. Intriguingly, only two insertion mutants displayed readily detectable T4L on the bacterial surface. The data create a picture in which the makeup and structure of a functional T3SA TC is highly amenable to physical perturbation, indicating that the tertiary structure of IpaB within the TC is more plastic than previously realized.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3428</identifier><identifier>PMID: 29672980</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Antigens, Bacterial - chemistry ; Antigens, Bacterial - genetics ; Antigens, Bacterial - metabolism ; Antigens, Bacterial - physiology ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Proteins - physiology ; Cells, Cultured ; Erythrocytes ; Full‐Length Papers ; Hemolysis ; Insertion ; Insertional mutagenesis ; Invasiveness ; IpaB ; Lysozyme ; Mammalian cells ; Mutagenesis ; Mutagenesis, Insertional - methods ; Mutants ; Perturbation ; Pore formation ; Protein structure ; Proteins ; Secretion ; Sheep ; Shigella ; Structure-function relationships ; Tertiary structure ; translocon ; type III secretion ; Type III Secretion Systems ; X-Ray Diffraction</subject><ispartof>Protein science, 2018-08, Vol.27 (8), p.1392-1406</ispartof><rights>2018 The Protein Society</rights><rights>2018 The Protein Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4388-4eee2a41ff273a3fb03af731f5cc55612a89c77cf631c6c61c36103ffd3f43ee3</citedby><cites>FETCH-LOGICAL-c4388-4eee2a41ff273a3fb03af731f5cc55612a89c77cf631c6c61c36103ffd3f43ee3</cites><orcidid>0000-0001-5635-325X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153406/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153406/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29672980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barta, Michael L.</creatorcontrib><creatorcontrib>Tachiyama, Shoichi</creatorcontrib><creatorcontrib>Muthuramalingam, Meenakumari</creatorcontrib><creatorcontrib>Arizmendi, Olivia</creatorcontrib><creatorcontrib>Villanueva, Cecilia E.</creatorcontrib><creatorcontrib>Ramyar, Kasra X.</creatorcontrib><creatorcontrib>Geisbrecht, Brian V.</creatorcontrib><creatorcontrib>Lovell, Scott</creatorcontrib><creatorcontrib>Battaile, Kevin P.</creatorcontrib><creatorcontrib>Picking, Wendy L.</creatorcontrib><creatorcontrib>Picking, William D.</creatorcontrib><title>Using disruptive insertional mutagenesis to identify the in situ structure‐function landscape of the Shigella translocator protein IpaB</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Bacterial type III secretion systems (T3SS) are used to inject proteins into mammalian cells to subvert cellular functions. The Shigella T3SS apparatus (T3SA) is comprised of a basal body, cytoplasmic sorting platform and exposed needle with needle “tip complex” (TC). TC maturation occurs when the translocator protein IpaB is recruited to the needle tip where both IpaD and IpaB control secretion induction. IpaB insertion into the host membrane is the first step of translocon pore formation and secretion induction. We employed disruptive insertional mutagenesis, using bacteriophage T4 lysozyme (T4L), within predicted IpaB loops to show how topological features affect TC functions (secretion control, translocon formation and effector secretion). Insertions within the N‐terminal half of IpaB were most likely to result in a loss of steady‐state secretion control, however, all but the two that were not recognized by the T3SA retained nearly wild‐type hemolysis (translocon formation) and invasiveness levels (effector secretion). In contrast, all but one insertion in the C‐terminal half of IpaB maintained secretion control but were impaired for hemolysis and invasion. These nature of the data suggest the latter mutants are defective in a post‐secretion event, most likely due to impaired interactions with the second translocator protein IpaC. Intriguingly, only two insertion mutants displayed readily detectable T4L on the bacterial surface. The data create a picture in which the makeup and structure of a functional T3SA TC is highly amenable to physical perturbation, indicating that the tertiary structure of IpaB within the TC is more plastic than previously realized.</description><subject>Animals</subject><subject>Antigens, Bacterial - chemistry</subject><subject>Antigens, Bacterial - genetics</subject><subject>Antigens, Bacterial - metabolism</subject><subject>Antigens, Bacterial - physiology</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Proteins - physiology</subject><subject>Cells, Cultured</subject><subject>Erythrocytes</subject><subject>Full‐Length Papers</subject><subject>Hemolysis</subject><subject>Insertion</subject><subject>Insertional mutagenesis</subject><subject>Invasiveness</subject><subject>IpaB</subject><subject>Lysozyme</subject><subject>Mammalian cells</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Insertional - methods</subject><subject>Mutants</subject><subject>Perturbation</subject><subject>Pore formation</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Secretion</subject><subject>Sheep</subject><subject>Shigella</subject><subject>Structure-function relationships</subject><subject>Tertiary structure</subject><subject>translocon</subject><subject>type III secretion</subject><subject>Type III Secretion Systems</subject><subject>X-Ray Diffraction</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtrFTEYhoMo9lgFf4EE3LiZmttkMhvBFi-FQkUtuAtp5ss5KXMmYy6Vs3Przt_oLzHT1noBVyHkycP7fS9Cjyk5oISw53MMB1wwdQetqJB9o3r56S5akV7SRnGp9tCDlC4IIYIyfh_tsV52rFdkhb6dJT-t8eBTLHP2l4D9lCBmHyYz4m3JZg0TJJ9wDtgPMGXvdjhvFg4nnwtOORabS4QfX7-7MtnlKx7NNCRrZsDBXdEfNn4N42hwjmZKY7Amh4hr7gxVdDybw4fonjNjgkc35z46e_3q49Hb5uT0zfHRy5PGCq5UIwCAGUGdYx033J0TblzHqWutbVtJmVG97TrrJKdWWkktl5Rw5wbuBAfg--jFtXcu51sYbB0pmlHP0W9N3OlgvP77ZfIbvQ6XWtKWCyKr4NmNIIbPBVLWW5_sMtwEoSTNCFN9y3qhKvr0H_QilFg3WylKqejajqjfQhtDShHcbRhK9NJvvQe99FvRJ3-GvwV_FVqB5hr44kfY_Vek370_vRL-BIr3tM8</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Barta, Michael L.</creator><creator>Tachiyama, Shoichi</creator><creator>Muthuramalingam, Meenakumari</creator><creator>Arizmendi, Olivia</creator><creator>Villanueva, Cecilia E.</creator><creator>Ramyar, Kasra X.</creator><creator>Geisbrecht, Brian V.</creator><creator>Lovell, Scott</creator><creator>Battaile, Kevin P.</creator><creator>Picking, Wendy L.</creator><creator>Picking, William D.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5635-325X</orcidid></search><sort><creationdate>201808</creationdate><title>Using disruptive insertional mutagenesis to identify the in situ structure‐function landscape of the Shigella translocator protein IpaB</title><author>Barta, Michael L. ; Tachiyama, Shoichi ; Muthuramalingam, Meenakumari ; Arizmendi, Olivia ; Villanueva, Cecilia E. ; Ramyar, Kasra X. ; Geisbrecht, Brian V. ; Lovell, Scott ; Battaile, Kevin P. ; Picking, Wendy L. ; Picking, William D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4388-4eee2a41ff273a3fb03af731f5cc55612a89c77cf631c6c61c36103ffd3f43ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antigens, Bacterial - chemistry</topic><topic>Antigens, Bacterial - genetics</topic><topic>Antigens, Bacterial - metabolism</topic><topic>Antigens, Bacterial - physiology</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Proteins - physiology</topic><topic>Cells, Cultured</topic><topic>Erythrocytes</topic><topic>Full‐Length Papers</topic><topic>Hemolysis</topic><topic>Insertion</topic><topic>Insertional mutagenesis</topic><topic>Invasiveness</topic><topic>IpaB</topic><topic>Lysozyme</topic><topic>Mammalian cells</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Insertional - methods</topic><topic>Mutants</topic><topic>Perturbation</topic><topic>Pore formation</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Secretion</topic><topic>Sheep</topic><topic>Shigella</topic><topic>Structure-function relationships</topic><topic>Tertiary structure</topic><topic>translocon</topic><topic>type III secretion</topic><topic>Type III Secretion Systems</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barta, Michael L.</creatorcontrib><creatorcontrib>Tachiyama, Shoichi</creatorcontrib><creatorcontrib>Muthuramalingam, Meenakumari</creatorcontrib><creatorcontrib>Arizmendi, Olivia</creatorcontrib><creatorcontrib>Villanueva, Cecilia E.</creatorcontrib><creatorcontrib>Ramyar, Kasra X.</creatorcontrib><creatorcontrib>Geisbrecht, Brian V.</creatorcontrib><creatorcontrib>Lovell, Scott</creatorcontrib><creatorcontrib>Battaile, Kevin P.</creatorcontrib><creatorcontrib>Picking, Wendy L.</creatorcontrib><creatorcontrib>Picking, William D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barta, Michael L.</au><au>Tachiyama, Shoichi</au><au>Muthuramalingam, Meenakumari</au><au>Arizmendi, Olivia</au><au>Villanueva, Cecilia E.</au><au>Ramyar, Kasra X.</au><au>Geisbrecht, Brian V.</au><au>Lovell, Scott</au><au>Battaile, Kevin P.</au><au>Picking, Wendy L.</au><au>Picking, William D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using disruptive insertional mutagenesis to identify the in situ structure‐function landscape of the Shigella translocator protein IpaB</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2018-08</date><risdate>2018</risdate><volume>27</volume><issue>8</issue><spage>1392</spage><epage>1406</epage><pages>1392-1406</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Bacterial type III secretion systems (T3SS) are used to inject proteins into mammalian cells to subvert cellular functions. The Shigella T3SS apparatus (T3SA) is comprised of a basal body, cytoplasmic sorting platform and exposed needle with needle “tip complex” (TC). TC maturation occurs when the translocator protein IpaB is recruited to the needle tip where both IpaD and IpaB control secretion induction. IpaB insertion into the host membrane is the first step of translocon pore formation and secretion induction. We employed disruptive insertional mutagenesis, using bacteriophage T4 lysozyme (T4L), within predicted IpaB loops to show how topological features affect TC functions (secretion control, translocon formation and effector secretion). Insertions within the N‐terminal half of IpaB were most likely to result in a loss of steady‐state secretion control, however, all but the two that were not recognized by the T3SA retained nearly wild‐type hemolysis (translocon formation) and invasiveness levels (effector secretion). In contrast, all but one insertion in the C‐terminal half of IpaB maintained secretion control but were impaired for hemolysis and invasion. These nature of the data suggest the latter mutants are defective in a post‐secretion event, most likely due to impaired interactions with the second translocator protein IpaC. Intriguingly, only two insertion mutants displayed readily detectable T4L on the bacterial surface. The data create a picture in which the makeup and structure of a functional T3SA TC is highly amenable to physical perturbation, indicating that the tertiary structure of IpaB within the TC is more plastic than previously realized.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29672980</pmid><doi>10.1002/pro.3428</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5635-325X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2018-08, Vol.27 (8), p.1392-1406
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6153406
source MEDLINE; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Antigens, Bacterial - chemistry
Antigens, Bacterial - genetics
Antigens, Bacterial - metabolism
Antigens, Bacterial - physiology
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Proteins - physiology
Cells, Cultured
Erythrocytes
Full‐Length Papers
Hemolysis
Insertion
Insertional mutagenesis
Invasiveness
IpaB
Lysozyme
Mammalian cells
Mutagenesis
Mutagenesis, Insertional - methods
Mutants
Perturbation
Pore formation
Protein structure
Proteins
Secretion
Sheep
Shigella
Structure-function relationships
Tertiary structure
translocon
type III secretion
Type III Secretion Systems
X-Ray Diffraction
title Using disruptive insertional mutagenesis to identify the in situ structure‐function landscape of the Shigella translocator protein IpaB
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20disruptive%20insertional%20mutagenesis%20to%20identify%20the%20in%20situ%20structure%E2%80%90function%20landscape%20of%20the%20Shigella%20translocator%20protein%20IpaB&rft.jtitle=Protein%20science&rft.au=Barta,%20Michael%20L.&rft.date=2018-08&rft.volume=27&rft.issue=8&rft.spage=1392&rft.epage=1406&rft.pages=1392-1406&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3428&rft_dat=%3Cproquest_pubme%3E2028952948%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111475708&rft_id=info:pmid/29672980&rfr_iscdi=true