Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface
Interfaces with the peripheral nerve provide the ability to extract motor activation and restore sensation to amputee patients. The ability to chronically extract motor activations from the peripheral nervous system remains an unsolved problem. In this study, chronic recordings with the Flat Interfa...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-09, Vol.8 (1), p.14149-10, Article 14149 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 14149 |
container_title | Scientific reports |
container_volume | 8 |
creator | Eggers, Thomas E. Dweiri, Yazan M. McCallum, Grant A. Durand, Dominique M. |
description | Interfaces with the peripheral nerve provide the ability to extract motor activation and restore sensation to amputee patients. The ability to chronically extract motor activations from the peripheral nervous system remains an unsolved problem. In this study, chronic recordings with the Flat Interface Nerve Electrode (FINE) are employed to recover the activation levels of innervated muscles. The FINEs were implanted on the sciatic nerves of canines, and neural recordings were obtained as the animal walked on a treadmill. During these trials, electromyograms (EMG) from the surrounding hamstring muscles were simultaneously recorded and the neural recordings are shown to be free of interference or crosstalk from these muscles. Using a novel Bayesian algorithm, the signals from individual fascicles were recovered and then compared to the corresponding target EMG of the lower limb. High correlation coefficients (0.84 ± 0.07 and 0.61 ± 0.12) between the extracted tibial fascicle/medial gastrocnemius and peroneal fascicle/tibialis anterior muscle were obtained. Analysis calculating the information transfer rate (ITR) from the muscle to the motor predictions yielded approximately 5 and 1 bit per second (bps) for the two sources. This method can predict motor signals from neural recordings and could be used to drive a prosthesis by interfacing with residual nerves. |
doi_str_mv | 10.1038/s41598-018-32357-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6148292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110239222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-980a643a9779518c4e61c8dc18aa85369577431201de02a8bfa15ae09b4018073</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotqh_wIUMuHEzmtdMko1Qii-oD0TXIU1vbaSdjMlMxX9vxtbnwrtIAvly7j05CO0TfEwwkyeRk0LJHBOZM8oKkYsN1KeYFzlllG7-OPfQXozPOFVBFSdqG_UYpkxwKfpodA_WLyG46im79o0P2cA2bmka56vs1TWzbDgLvnI2u0tQPYNg5tkNhCVkQ7-o2wZCdlWldWos7KKtqZlH2FvvO-jx_OxheJmPbi-uhoNRbrngTa4kNiVnRgmhCiIth5JYObFEGiMLVqpCCM4IxWQCmBo5nhpSGMBqzJNdLNgOOl3p1u14ARMLVZPG0nVwCxPetDdO_76p3Ew_-aUuCZdU0SRwtBYI_qWF2OiFixbmc1OBb6OmJBUvsWQJPfyDPvs2VMleR6V_VJR2gnRF2eBjDDD9GoZg3eWlV3npZEB_5KU7Gwc_bXw9-UwnAWwFxLoLCMJ3739k3wFxh5-q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110239222</pqid></control><display><type>article</type><title>Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Eggers, Thomas E. ; Dweiri, Yazan M. ; McCallum, Grant A. ; Durand, Dominique M.</creator><creatorcontrib>Eggers, Thomas E. ; Dweiri, Yazan M. ; McCallum, Grant A. ; Durand, Dominique M.</creatorcontrib><description>Interfaces with the peripheral nerve provide the ability to extract motor activation and restore sensation to amputee patients. The ability to chronically extract motor activations from the peripheral nervous system remains an unsolved problem. In this study, chronic recordings with the Flat Interface Nerve Electrode (FINE) are employed to recover the activation levels of innervated muscles. The FINEs were implanted on the sciatic nerves of canines, and neural recordings were obtained as the animal walked on a treadmill. During these trials, electromyograms (EMG) from the surrounding hamstring muscles were simultaneously recorded and the neural recordings are shown to be free of interference or crosstalk from these muscles. Using a novel Bayesian algorithm, the signals from individual fascicles were recovered and then compared to the corresponding target EMG of the lower limb. High correlation coefficients (0.84 ± 0.07 and 0.61 ± 0.12) between the extracted tibial fascicle/medial gastrocnemius and peroneal fascicle/tibialis anterior muscle were obtained. Analysis calculating the information transfer rate (ITR) from the muscle to the motor predictions yielded approximately 5 and 1 bit per second (bps) for the two sources. This method can predict motor signals from neural recordings and could be used to drive a prosthesis by interfacing with residual nerves.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-32357-7</identifier><identifier>PMID: 30237487</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1959/2605 ; 639/166/985 ; 692/308/575 ; 9/10 ; Algorithms ; Amputation ; Animals ; Bayesian analysis ; Biomedical engineering ; Clinical trials ; Correlation coefficient ; Dogs ; Electrodes, Implanted ; Electromyography ; Engineering ; Gait ; Gait - physiology ; Hamstring Muscles - physiology ; Humanities and Social Sciences ; Interfaces ; Localization ; multidisciplinary ; Muscles ; Nervous system ; Prostheses ; Recording sessions ; Recovery of Function - physiology ; Sciatic Nerve - physiology ; Science ; Science (multidisciplinary) ; Signal processing ; Skeletal muscle ; Tibialis anterior muscle ; User-Computer Interface ; Walking - physiology</subject><ispartof>Scientific reports, 2018-09, Vol.8 (1), p.14149-10, Article 14149</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-980a643a9779518c4e61c8dc18aa85369577431201de02a8bfa15ae09b4018073</citedby><cites>FETCH-LOGICAL-c474t-980a643a9779518c4e61c8dc18aa85369577431201de02a8bfa15ae09b4018073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148292/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148292/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30237487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eggers, Thomas E.</creatorcontrib><creatorcontrib>Dweiri, Yazan M.</creatorcontrib><creatorcontrib>McCallum, Grant A.</creatorcontrib><creatorcontrib>Durand, Dominique M.</creatorcontrib><title>Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Interfaces with the peripheral nerve provide the ability to extract motor activation and restore sensation to amputee patients. The ability to chronically extract motor activations from the peripheral nervous system remains an unsolved problem. In this study, chronic recordings with the Flat Interface Nerve Electrode (FINE) are employed to recover the activation levels of innervated muscles. The FINEs were implanted on the sciatic nerves of canines, and neural recordings were obtained as the animal walked on a treadmill. During these trials, electromyograms (EMG) from the surrounding hamstring muscles were simultaneously recorded and the neural recordings are shown to be free of interference or crosstalk from these muscles. Using a novel Bayesian algorithm, the signals from individual fascicles were recovered and then compared to the corresponding target EMG of the lower limb. High correlation coefficients (0.84 ± 0.07 and 0.61 ± 0.12) between the extracted tibial fascicle/medial gastrocnemius and peroneal fascicle/tibialis anterior muscle were obtained. Analysis calculating the information transfer rate (ITR) from the muscle to the motor predictions yielded approximately 5 and 1 bit per second (bps) for the two sources. This method can predict motor signals from neural recordings and could be used to drive a prosthesis by interfacing with residual nerves.</description><subject>631/378/1959/2605</subject><subject>639/166/985</subject><subject>692/308/575</subject><subject>9/10</subject><subject>Algorithms</subject><subject>Amputation</subject><subject>Animals</subject><subject>Bayesian analysis</subject><subject>Biomedical engineering</subject><subject>Clinical trials</subject><subject>Correlation coefficient</subject><subject>Dogs</subject><subject>Electrodes, Implanted</subject><subject>Electromyography</subject><subject>Engineering</subject><subject>Gait</subject><subject>Gait - physiology</subject><subject>Hamstring Muscles - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Localization</subject><subject>multidisciplinary</subject><subject>Muscles</subject><subject>Nervous system</subject><subject>Prostheses</subject><subject>Recording sessions</subject><subject>Recovery of Function - physiology</subject><subject>Sciatic Nerve - physiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal processing</subject><subject>Skeletal muscle</subject><subject>Tibialis anterior muscle</subject><subject>User-Computer Interface</subject><subject>Walking - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtLAzEUhYMotqh_wIUMuHEzmtdMko1Qii-oD0TXIU1vbaSdjMlMxX9vxtbnwrtIAvly7j05CO0TfEwwkyeRk0LJHBOZM8oKkYsN1KeYFzlllG7-OPfQXozPOFVBFSdqG_UYpkxwKfpodA_WLyG46im79o0P2cA2bmka56vs1TWzbDgLvnI2u0tQPYNg5tkNhCVkQ7-o2wZCdlWldWos7KKtqZlH2FvvO-jx_OxheJmPbi-uhoNRbrngTa4kNiVnRgmhCiIth5JYObFEGiMLVqpCCM4IxWQCmBo5nhpSGMBqzJNdLNgOOl3p1u14ARMLVZPG0nVwCxPetDdO_76p3Ew_-aUuCZdU0SRwtBYI_qWF2OiFixbmc1OBb6OmJBUvsWQJPfyDPvs2VMleR6V_VJR2gnRF2eBjDDD9GoZg3eWlV3npZEB_5KU7Gwc_bXw9-UwnAWwFxLoLCMJ3739k3wFxh5-q</recordid><startdate>20180920</startdate><enddate>20180920</enddate><creator>Eggers, Thomas E.</creator><creator>Dweiri, Yazan M.</creator><creator>McCallum, Grant A.</creator><creator>Durand, Dominique M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180920</creationdate><title>Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface</title><author>Eggers, Thomas E. ; Dweiri, Yazan M. ; McCallum, Grant A. ; Durand, Dominique M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-980a643a9779518c4e61c8dc18aa85369577431201de02a8bfa15ae09b4018073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378/1959/2605</topic><topic>639/166/985</topic><topic>692/308/575</topic><topic>9/10</topic><topic>Algorithms</topic><topic>Amputation</topic><topic>Animals</topic><topic>Bayesian analysis</topic><topic>Biomedical engineering</topic><topic>Clinical trials</topic><topic>Correlation coefficient</topic><topic>Dogs</topic><topic>Electrodes, Implanted</topic><topic>Electromyography</topic><topic>Engineering</topic><topic>Gait</topic><topic>Gait - physiology</topic><topic>Hamstring Muscles - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Localization</topic><topic>multidisciplinary</topic><topic>Muscles</topic><topic>Nervous system</topic><topic>Prostheses</topic><topic>Recording sessions</topic><topic>Recovery of Function - physiology</topic><topic>Sciatic Nerve - physiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal processing</topic><topic>Skeletal muscle</topic><topic>Tibialis anterior muscle</topic><topic>User-Computer Interface</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eggers, Thomas E.</creatorcontrib><creatorcontrib>Dweiri, Yazan M.</creatorcontrib><creatorcontrib>McCallum, Grant A.</creatorcontrib><creatorcontrib>Durand, Dominique M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eggers, Thomas E.</au><au>Dweiri, Yazan M.</au><au>McCallum, Grant A.</au><au>Durand, Dominique M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-09-20</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>14149</spage><epage>10</epage><pages>14149-10</pages><artnum>14149</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Interfaces with the peripheral nerve provide the ability to extract motor activation and restore sensation to amputee patients. The ability to chronically extract motor activations from the peripheral nervous system remains an unsolved problem. In this study, chronic recordings with the Flat Interface Nerve Electrode (FINE) are employed to recover the activation levels of innervated muscles. The FINEs were implanted on the sciatic nerves of canines, and neural recordings were obtained as the animal walked on a treadmill. During these trials, electromyograms (EMG) from the surrounding hamstring muscles were simultaneously recorded and the neural recordings are shown to be free of interference or crosstalk from these muscles. Using a novel Bayesian algorithm, the signals from individual fascicles were recovered and then compared to the corresponding target EMG of the lower limb. High correlation coefficients (0.84 ± 0.07 and 0.61 ± 0.12) between the extracted tibial fascicle/medial gastrocnemius and peroneal fascicle/tibialis anterior muscle were obtained. Analysis calculating the information transfer rate (ITR) from the muscle to the motor predictions yielded approximately 5 and 1 bit per second (bps) for the two sources. This method can predict motor signals from neural recordings and could be used to drive a prosthesis by interfacing with residual nerves.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30237487</pmid><doi>10.1038/s41598-018-32357-7</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-09, Vol.8 (1), p.14149-10, Article 14149 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6148292 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/378/1959/2605 639/166/985 692/308/575 9/10 Algorithms Amputation Animals Bayesian analysis Biomedical engineering Clinical trials Correlation coefficient Dogs Electrodes, Implanted Electromyography Engineering Gait Gait - physiology Hamstring Muscles - physiology Humanities and Social Sciences Interfaces Localization multidisciplinary Muscles Nervous system Prostheses Recording sessions Recovery of Function - physiology Sciatic Nerve - physiology Science Science (multidisciplinary) Signal processing Skeletal muscle Tibialis anterior muscle User-Computer Interface Walking - physiology |
title | Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20Motor%20Activation%20with%20Chronic%20Peripheral%20Nerve%20Computer%20Interface&rft.jtitle=Scientific%20reports&rft.au=Eggers,%20Thomas%20E.&rft.date=2018-09-20&rft.volume=8&rft.issue=1&rft.spage=14149&rft.epage=10&rft.pages=14149-10&rft.artnum=14149&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-32357-7&rft_dat=%3Cproquest_pubme%3E2110239222%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110239222&rft_id=info:pmid/30237487&rfr_iscdi=true |