Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface

Interfaces with the peripheral nerve provide the ability to extract motor activation and restore sensation to amputee patients. The ability to chronically extract motor activations from the peripheral nervous system remains an unsolved problem. In this study, chronic recordings with the Flat Interfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-09, Vol.8 (1), p.14149-10, Article 14149
Hauptverfasser: Eggers, Thomas E., Dweiri, Yazan M., McCallum, Grant A., Durand, Dominique M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 14149
container_title Scientific reports
container_volume 8
creator Eggers, Thomas E.
Dweiri, Yazan M.
McCallum, Grant A.
Durand, Dominique M.
description Interfaces with the peripheral nerve provide the ability to extract motor activation and restore sensation to amputee patients. The ability to chronically extract motor activations from the peripheral nervous system remains an unsolved problem. In this study, chronic recordings with the Flat Interface Nerve Electrode (FINE) are employed to recover the activation levels of innervated muscles. The FINEs were implanted on the sciatic nerves of canines, and neural recordings were obtained as the animal walked on a treadmill. During these trials, electromyograms (EMG) from the surrounding hamstring muscles were simultaneously recorded and the neural recordings are shown to be free of interference or crosstalk from these muscles. Using a novel Bayesian algorithm, the signals from individual fascicles were recovered and then compared to the corresponding target EMG of the lower limb. High correlation coefficients (0.84 ± 0.07 and 0.61 ± 0.12) between the extracted tibial fascicle/medial gastrocnemius and peroneal fascicle/tibialis anterior muscle were obtained. Analysis calculating the information transfer rate (ITR) from the muscle to the motor predictions yielded approximately 5 and 1 bit per second (bps) for the two sources. This method can predict motor signals from neural recordings and could be used to drive a prosthesis by interfacing with residual nerves.
doi_str_mv 10.1038/s41598-018-32357-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6148292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110239222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-980a643a9779518c4e61c8dc18aa85369577431201de02a8bfa15ae09b4018073</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotqh_wIUMuHEzmtdMko1Qii-oD0TXIU1vbaSdjMlMxX9vxtbnwrtIAvly7j05CO0TfEwwkyeRk0LJHBOZM8oKkYsN1KeYFzlllG7-OPfQXozPOFVBFSdqG_UYpkxwKfpodA_WLyG46im79o0P2cA2bmka56vs1TWzbDgLvnI2u0tQPYNg5tkNhCVkQ7-o2wZCdlWldWos7KKtqZlH2FvvO-jx_OxheJmPbi-uhoNRbrngTa4kNiVnRgmhCiIth5JYObFEGiMLVqpCCM4IxWQCmBo5nhpSGMBqzJNdLNgOOl3p1u14ARMLVZPG0nVwCxPetDdO_76p3Ew_-aUuCZdU0SRwtBYI_qWF2OiFixbmc1OBb6OmJBUvsWQJPfyDPvs2VMleR6V_VJR2gnRF2eBjDDD9GoZg3eWlV3npZEB_5KU7Gwc_bXw9-UwnAWwFxLoLCMJ3739k3wFxh5-q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110239222</pqid></control><display><type>article</type><title>Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Eggers, Thomas E. ; Dweiri, Yazan M. ; McCallum, Grant A. ; Durand, Dominique M.</creator><creatorcontrib>Eggers, Thomas E. ; Dweiri, Yazan M. ; McCallum, Grant A. ; Durand, Dominique M.</creatorcontrib><description>Interfaces with the peripheral nerve provide the ability to extract motor activation and restore sensation to amputee patients. The ability to chronically extract motor activations from the peripheral nervous system remains an unsolved problem. In this study, chronic recordings with the Flat Interface Nerve Electrode (FINE) are employed to recover the activation levels of innervated muscles. The FINEs were implanted on the sciatic nerves of canines, and neural recordings were obtained as the animal walked on a treadmill. During these trials, electromyograms (EMG) from the surrounding hamstring muscles were simultaneously recorded and the neural recordings are shown to be free of interference or crosstalk from these muscles. Using a novel Bayesian algorithm, the signals from individual fascicles were recovered and then compared to the corresponding target EMG of the lower limb. High correlation coefficients (0.84 ± 0.07 and 0.61 ± 0.12) between the extracted tibial fascicle/medial gastrocnemius and peroneal fascicle/tibialis anterior muscle were obtained. Analysis calculating the information transfer rate (ITR) from the muscle to the motor predictions yielded approximately 5 and 1 bit per second (bps) for the two sources. This method can predict motor signals from neural recordings and could be used to drive a prosthesis by interfacing with residual nerves.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-32357-7</identifier><identifier>PMID: 30237487</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1959/2605 ; 639/166/985 ; 692/308/575 ; 9/10 ; Algorithms ; Amputation ; Animals ; Bayesian analysis ; Biomedical engineering ; Clinical trials ; Correlation coefficient ; Dogs ; Electrodes, Implanted ; Electromyography ; Engineering ; Gait ; Gait - physiology ; Hamstring Muscles - physiology ; Humanities and Social Sciences ; Interfaces ; Localization ; multidisciplinary ; Muscles ; Nervous system ; Prostheses ; Recording sessions ; Recovery of Function - physiology ; Sciatic Nerve - physiology ; Science ; Science (multidisciplinary) ; Signal processing ; Skeletal muscle ; Tibialis anterior muscle ; User-Computer Interface ; Walking - physiology</subject><ispartof>Scientific reports, 2018-09, Vol.8 (1), p.14149-10, Article 14149</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-980a643a9779518c4e61c8dc18aa85369577431201de02a8bfa15ae09b4018073</citedby><cites>FETCH-LOGICAL-c474t-980a643a9779518c4e61c8dc18aa85369577431201de02a8bfa15ae09b4018073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148292/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148292/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30237487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eggers, Thomas E.</creatorcontrib><creatorcontrib>Dweiri, Yazan M.</creatorcontrib><creatorcontrib>McCallum, Grant A.</creatorcontrib><creatorcontrib>Durand, Dominique M.</creatorcontrib><title>Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Interfaces with the peripheral nerve provide the ability to extract motor activation and restore sensation to amputee patients. The ability to chronically extract motor activations from the peripheral nervous system remains an unsolved problem. In this study, chronic recordings with the Flat Interface Nerve Electrode (FINE) are employed to recover the activation levels of innervated muscles. The FINEs were implanted on the sciatic nerves of canines, and neural recordings were obtained as the animal walked on a treadmill. During these trials, electromyograms (EMG) from the surrounding hamstring muscles were simultaneously recorded and the neural recordings are shown to be free of interference or crosstalk from these muscles. Using a novel Bayesian algorithm, the signals from individual fascicles were recovered and then compared to the corresponding target EMG of the lower limb. High correlation coefficients (0.84 ± 0.07 and 0.61 ± 0.12) between the extracted tibial fascicle/medial gastrocnemius and peroneal fascicle/tibialis anterior muscle were obtained. Analysis calculating the information transfer rate (ITR) from the muscle to the motor predictions yielded approximately 5 and 1 bit per second (bps) for the two sources. This method can predict motor signals from neural recordings and could be used to drive a prosthesis by interfacing with residual nerves.</description><subject>631/378/1959/2605</subject><subject>639/166/985</subject><subject>692/308/575</subject><subject>9/10</subject><subject>Algorithms</subject><subject>Amputation</subject><subject>Animals</subject><subject>Bayesian analysis</subject><subject>Biomedical engineering</subject><subject>Clinical trials</subject><subject>Correlation coefficient</subject><subject>Dogs</subject><subject>Electrodes, Implanted</subject><subject>Electromyography</subject><subject>Engineering</subject><subject>Gait</subject><subject>Gait - physiology</subject><subject>Hamstring Muscles - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Localization</subject><subject>multidisciplinary</subject><subject>Muscles</subject><subject>Nervous system</subject><subject>Prostheses</subject><subject>Recording sessions</subject><subject>Recovery of Function - physiology</subject><subject>Sciatic Nerve - physiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal processing</subject><subject>Skeletal muscle</subject><subject>Tibialis anterior muscle</subject><subject>User-Computer Interface</subject><subject>Walking - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtLAzEUhYMotqh_wIUMuHEzmtdMko1Qii-oD0TXIU1vbaSdjMlMxX9vxtbnwrtIAvly7j05CO0TfEwwkyeRk0LJHBOZM8oKkYsN1KeYFzlllG7-OPfQXozPOFVBFSdqG_UYpkxwKfpodA_WLyG46im79o0P2cA2bmka56vs1TWzbDgLvnI2u0tQPYNg5tkNhCVkQ7-o2wZCdlWldWos7KKtqZlH2FvvO-jx_OxheJmPbi-uhoNRbrngTa4kNiVnRgmhCiIth5JYObFEGiMLVqpCCM4IxWQCmBo5nhpSGMBqzJNdLNgOOl3p1u14ARMLVZPG0nVwCxPetDdO_76p3Ew_-aUuCZdU0SRwtBYI_qWF2OiFixbmc1OBb6OmJBUvsWQJPfyDPvs2VMleR6V_VJR2gnRF2eBjDDD9GoZg3eWlV3npZEB_5KU7Gwc_bXw9-UwnAWwFxLoLCMJ3739k3wFxh5-q</recordid><startdate>20180920</startdate><enddate>20180920</enddate><creator>Eggers, Thomas E.</creator><creator>Dweiri, Yazan M.</creator><creator>McCallum, Grant A.</creator><creator>Durand, Dominique M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180920</creationdate><title>Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface</title><author>Eggers, Thomas E. ; Dweiri, Yazan M. ; McCallum, Grant A. ; Durand, Dominique M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-980a643a9779518c4e61c8dc18aa85369577431201de02a8bfa15ae09b4018073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378/1959/2605</topic><topic>639/166/985</topic><topic>692/308/575</topic><topic>9/10</topic><topic>Algorithms</topic><topic>Amputation</topic><topic>Animals</topic><topic>Bayesian analysis</topic><topic>Biomedical engineering</topic><topic>Clinical trials</topic><topic>Correlation coefficient</topic><topic>Dogs</topic><topic>Electrodes, Implanted</topic><topic>Electromyography</topic><topic>Engineering</topic><topic>Gait</topic><topic>Gait - physiology</topic><topic>Hamstring Muscles - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Localization</topic><topic>multidisciplinary</topic><topic>Muscles</topic><topic>Nervous system</topic><topic>Prostheses</topic><topic>Recording sessions</topic><topic>Recovery of Function - physiology</topic><topic>Sciatic Nerve - physiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal processing</topic><topic>Skeletal muscle</topic><topic>Tibialis anterior muscle</topic><topic>User-Computer Interface</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eggers, Thomas E.</creatorcontrib><creatorcontrib>Dweiri, Yazan M.</creatorcontrib><creatorcontrib>McCallum, Grant A.</creatorcontrib><creatorcontrib>Durand, Dominique M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eggers, Thomas E.</au><au>Dweiri, Yazan M.</au><au>McCallum, Grant A.</au><au>Durand, Dominique M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-09-20</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>14149</spage><epage>10</epage><pages>14149-10</pages><artnum>14149</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Interfaces with the peripheral nerve provide the ability to extract motor activation and restore sensation to amputee patients. The ability to chronically extract motor activations from the peripheral nervous system remains an unsolved problem. In this study, chronic recordings with the Flat Interface Nerve Electrode (FINE) are employed to recover the activation levels of innervated muscles. The FINEs were implanted on the sciatic nerves of canines, and neural recordings were obtained as the animal walked on a treadmill. During these trials, electromyograms (EMG) from the surrounding hamstring muscles were simultaneously recorded and the neural recordings are shown to be free of interference or crosstalk from these muscles. Using a novel Bayesian algorithm, the signals from individual fascicles were recovered and then compared to the corresponding target EMG of the lower limb. High correlation coefficients (0.84 ± 0.07 and 0.61 ± 0.12) between the extracted tibial fascicle/medial gastrocnemius and peroneal fascicle/tibialis anterior muscle were obtained. Analysis calculating the information transfer rate (ITR) from the muscle to the motor predictions yielded approximately 5 and 1 bit per second (bps) for the two sources. This method can predict motor signals from neural recordings and could be used to drive a prosthesis by interfacing with residual nerves.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30237487</pmid><doi>10.1038/s41598-018-32357-7</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-09, Vol.8 (1), p.14149-10, Article 14149
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6148292
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 631/378/1959/2605
639/166/985
692/308/575
9/10
Algorithms
Amputation
Animals
Bayesian analysis
Biomedical engineering
Clinical trials
Correlation coefficient
Dogs
Electrodes, Implanted
Electromyography
Engineering
Gait
Gait - physiology
Hamstring Muscles - physiology
Humanities and Social Sciences
Interfaces
Localization
multidisciplinary
Muscles
Nervous system
Prostheses
Recording sessions
Recovery of Function - physiology
Sciatic Nerve - physiology
Science
Science (multidisciplinary)
Signal processing
Skeletal muscle
Tibialis anterior muscle
User-Computer Interface
Walking - physiology
title Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20Motor%20Activation%20with%20Chronic%20Peripheral%20Nerve%20Computer%20Interface&rft.jtitle=Scientific%20reports&rft.au=Eggers,%20Thomas%20E.&rft.date=2018-09-20&rft.volume=8&rft.issue=1&rft.spage=14149&rft.epage=10&rft.pages=14149-10&rft.artnum=14149&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-32357-7&rft_dat=%3Cproquest_pubme%3E2110239222%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110239222&rft_id=info:pmid/30237487&rfr_iscdi=true