OS2.2 Highly personalized peptide vaccination for patients with newly diagnosed glioblastoma: the GAPVAC trial

Abstract Background There is a need for treatment personalization as every cancer is molecularly unique. In addition glioblastoma (GB) are immunologically regarded as resistant, “cold” tumor with few targetable antigens available from mutations, thus demanding new personalized immunotherapies. So fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology (Charlottesville, Va.) Va.), 2018-09, Vol.20 (suppl_3), p.iii219-iii219
Hauptverfasser: Dietrich, P, Wick, W, Hilf, N, Frenzel, K, Gouttefangeas, C, Platten, M, thor Straten, P, Lassen, U, Rodon, J, Bukur, V, Admon, A, van der Burg, S H, von Deimling, A, Kroep, J R, Martinez-Ricarte, F, Okada, H, Ottensmeier, C H, Ponsati, B, Poulsen, H S, Stevanovic, S, Tabatabai, G, Rammensee, H, Sahin, U, Singh-Jasuja, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page iii219
container_issue suppl_3
container_start_page iii219
container_title Neuro-oncology (Charlottesville, Va.)
container_volume 20
creator Dietrich, P
Wick, W
Hilf, N
Frenzel, K
Gouttefangeas, C
Platten, M
thor Straten, P
Lassen, U
Rodon, J
Bukur, V
Admon, A
van der Burg, S H
von Deimling, A
Kroep, J R
Martinez-Ricarte, F
Okada, H
Ottensmeier, C H
Ponsati, B
Poulsen, H S
Stevanovic, S
Tabatabai, G
Rammensee, H
Sahin, U
Singh-Jasuja, H
description Abstract Background There is a need for treatment personalization as every cancer is molecularly unique. In addition glioblastoma (GB) are immunologically regarded as resistant, “cold” tumor with few targetable antigens available from mutations, thus demanding new personalized immunotherapies. So far outside Neuro-Oncology, T cells orchestrate impressive anti-tumor effects with checkpoint inhibitors, but also vaccines. Material and Methods The GAPVAC consortium established an immunotherapy, for which personalized selection of 2 peptide-based actively personalized vaccines (APVAC) per patient for treatment of newly diagnosed GB was based not only on whole-exome sequencing but also on human leukocyte antigen (HLA)-ligandome analyses providing insight into the actual presentation of relevant epitopes in the tumor. GAPVAC-101 (NCT02149225) enrolled 16 patients in a European phase I feasibility, safety and immunogenicity trial integrated into standard of care. For APVAC1, up to 7 peptides were selected from a trial specific warehouse based on individual biomarker data. Vaccination (i.d.) with GM-CSF and poly-ICLC in 15 patients started with the 1st adjuvant cycle of temozolomide (TMZ). For APVAC2, analyses revealed a median of 36 somatic, non-synonymous mutations in the patients’ tumors. From the 4th TMZ cycle, 11 patients received APVAC2 with usually 2 de novo antigens per patient selected according to mutation, actual or putative HLA presentation and immunogenicity. Overall 20 APVAC2 antigens incl. 14 mutated were vaccinated. Results Adverse events were largely reversible injection site reactions and two anaphylactic reactions and one increase in cerebral edema. Short, non-mutated APVAC1 antigens induced sustained CD8 responses with memory phenotype. Mutated APVAC2 antigens induced predominantly CD4 responses of favorable TH1 type. Median PFS and OS were 14.2 and 29 months from diagnosis, respectively, in patients that received ≥1 APVAC vaccination (N=15). Conclusion Overall, GAPVAC displayed expected safety profiles and high biological activity indicating further development.
doi_str_mv 10.1093/neuonc/noy139.015
format Article
fullrecord <record><control><sourceid>oup_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6144537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/neuonc/noy139.015</oup_id><sourcerecordid>10.1093/neuonc/noy139.015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1775-7f89bc0a9f88791a0dcf5a49aa5b1c76677069bfef9e9483298fbc246361b9813</originalsourceid><addsrcrecordid>eNqNkN9KwzAUh4MoOKcP4F0ewG5J2ySNF8IYugmDCf65DWmadJEuKUm3MZ_eakXwzqtzDud8Pw4fANcYTTDi2dTpnXdq6vwRZ3yCMDkBI0zSLCEFpafffZoUBLNzcBHjO0IpJhSPgFs_p5MULm29aY6w1SF6Jxv7oat-aDtbabiXSlknO-sdND7Atm-16yI82G4DnT70YGVl7Xzsqbqxvmxk7PxW3sJuo-Fi9vQ2m8MuWNlcgjMjm6ivfuoYvD7cv8yXyWq9eJzPVonCjJGEmYKXCkluioJxLFGlDJE5l5KUWDFKGUOUl0YbrnleZCkvTKnSnGYUl7zA2RjcDbntrtzqSvX_BtmINtitDEfhpRV_N85uRO33guI8JxnrA_AQoIKPMWjzy2IkvoyLwbgYjIveeM_cDIzftf84_wT8PIjP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OS2.2 Highly personalized peptide vaccination for patients with newly diagnosed glioblastoma: the GAPVAC trial</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>PubMed Central</source><creator>Dietrich, P ; Wick, W ; Hilf, N ; Frenzel, K ; Gouttefangeas, C ; Platten, M ; thor Straten, P ; Lassen, U ; Rodon, J ; Bukur, V ; Admon, A ; van der Burg, S H ; von Deimling, A ; Kroep, J R ; Martinez-Ricarte, F ; Okada, H ; Ottensmeier, C H ; Ponsati, B ; Poulsen, H S ; Stevanovic, S ; Tabatabai, G ; Rammensee, H ; Sahin, U ; Singh-Jasuja, H</creator><creatorcontrib>Dietrich, P ; Wick, W ; Hilf, N ; Frenzel, K ; Gouttefangeas, C ; Platten, M ; thor Straten, P ; Lassen, U ; Rodon, J ; Bukur, V ; Admon, A ; van der Burg, S H ; von Deimling, A ; Kroep, J R ; Martinez-Ricarte, F ; Okada, H ; Ottensmeier, C H ; Ponsati, B ; Poulsen, H S ; Stevanovic, S ; Tabatabai, G ; Rammensee, H ; Sahin, U ; Singh-Jasuja, H ; GAPVAC Consortium</creatorcontrib><description>Abstract Background There is a need for treatment personalization as every cancer is molecularly unique. In addition glioblastoma (GB) are immunologically regarded as resistant, “cold” tumor with few targetable antigens available from mutations, thus demanding new personalized immunotherapies. So far outside Neuro-Oncology, T cells orchestrate impressive anti-tumor effects with checkpoint inhibitors, but also vaccines. Material and Methods The GAPVAC consortium established an immunotherapy, for which personalized selection of 2 peptide-based actively personalized vaccines (APVAC) per patient for treatment of newly diagnosed GB was based not only on whole-exome sequencing but also on human leukocyte antigen (HLA)-ligandome analyses providing insight into the actual presentation of relevant epitopes in the tumor. GAPVAC-101 (NCT02149225) enrolled 16 patients in a European phase I feasibility, safety and immunogenicity trial integrated into standard of care. For APVAC1, up to 7 peptides were selected from a trial specific warehouse based on individual biomarker data. Vaccination (i.d.) with GM-CSF and poly-ICLC in 15 patients started with the 1st adjuvant cycle of temozolomide (TMZ). For APVAC2, analyses revealed a median of 36 somatic, non-synonymous mutations in the patients’ tumors. From the 4th TMZ cycle, 11 patients received APVAC2 with usually 2 de novo antigens per patient selected according to mutation, actual or putative HLA presentation and immunogenicity. Overall 20 APVAC2 antigens incl. 14 mutated were vaccinated. Results Adverse events were largely reversible injection site reactions and two anaphylactic reactions and one increase in cerebral edema. Short, non-mutated APVAC1 antigens induced sustained CD8 responses with memory phenotype. Mutated APVAC2 antigens induced predominantly CD4 responses of favorable TH1 type. Median PFS and OS were 14.2 and 29 months from diagnosis, respectively, in patients that received ≥1 APVAC vaccination (N=15). Conclusion Overall, GAPVAC displayed expected safety profiles and high biological activity indicating further development.</description><identifier>ISSN: 1522-8517</identifier><identifier>EISSN: 1523-5866</identifier><identifier>DOI: 10.1093/neuonc/noy139.015</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Oral Presentations</subject><ispartof>Neuro-oncology (Charlottesville, Va.), 2018-09, Vol.20 (suppl_3), p.iii219-iii219</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6144537/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6144537/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1584,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Dietrich, P</creatorcontrib><creatorcontrib>Wick, W</creatorcontrib><creatorcontrib>Hilf, N</creatorcontrib><creatorcontrib>Frenzel, K</creatorcontrib><creatorcontrib>Gouttefangeas, C</creatorcontrib><creatorcontrib>Platten, M</creatorcontrib><creatorcontrib>thor Straten, P</creatorcontrib><creatorcontrib>Lassen, U</creatorcontrib><creatorcontrib>Rodon, J</creatorcontrib><creatorcontrib>Bukur, V</creatorcontrib><creatorcontrib>Admon, A</creatorcontrib><creatorcontrib>van der Burg, S H</creatorcontrib><creatorcontrib>von Deimling, A</creatorcontrib><creatorcontrib>Kroep, J R</creatorcontrib><creatorcontrib>Martinez-Ricarte, F</creatorcontrib><creatorcontrib>Okada, H</creatorcontrib><creatorcontrib>Ottensmeier, C H</creatorcontrib><creatorcontrib>Ponsati, B</creatorcontrib><creatorcontrib>Poulsen, H S</creatorcontrib><creatorcontrib>Stevanovic, S</creatorcontrib><creatorcontrib>Tabatabai, G</creatorcontrib><creatorcontrib>Rammensee, H</creatorcontrib><creatorcontrib>Sahin, U</creatorcontrib><creatorcontrib>Singh-Jasuja, H</creatorcontrib><creatorcontrib>GAPVAC Consortium</creatorcontrib><title>OS2.2 Highly personalized peptide vaccination for patients with newly diagnosed glioblastoma: the GAPVAC trial</title><title>Neuro-oncology (Charlottesville, Va.)</title><description>Abstract Background There is a need for treatment personalization as every cancer is molecularly unique. In addition glioblastoma (GB) are immunologically regarded as resistant, “cold” tumor with few targetable antigens available from mutations, thus demanding new personalized immunotherapies. So far outside Neuro-Oncology, T cells orchestrate impressive anti-tumor effects with checkpoint inhibitors, but also vaccines. Material and Methods The GAPVAC consortium established an immunotherapy, for which personalized selection of 2 peptide-based actively personalized vaccines (APVAC) per patient for treatment of newly diagnosed GB was based not only on whole-exome sequencing but also on human leukocyte antigen (HLA)-ligandome analyses providing insight into the actual presentation of relevant epitopes in the tumor. GAPVAC-101 (NCT02149225) enrolled 16 patients in a European phase I feasibility, safety and immunogenicity trial integrated into standard of care. For APVAC1, up to 7 peptides were selected from a trial specific warehouse based on individual biomarker data. Vaccination (i.d.) with GM-CSF and poly-ICLC in 15 patients started with the 1st adjuvant cycle of temozolomide (TMZ). For APVAC2, analyses revealed a median of 36 somatic, non-synonymous mutations in the patients’ tumors. From the 4th TMZ cycle, 11 patients received APVAC2 with usually 2 de novo antigens per patient selected according to mutation, actual or putative HLA presentation and immunogenicity. Overall 20 APVAC2 antigens incl. 14 mutated were vaccinated. Results Adverse events were largely reversible injection site reactions and two anaphylactic reactions and one increase in cerebral edema. Short, non-mutated APVAC1 antigens induced sustained CD8 responses with memory phenotype. Mutated APVAC2 antigens induced predominantly CD4 responses of favorable TH1 type. Median PFS and OS were 14.2 and 29 months from diagnosis, respectively, in patients that received ≥1 APVAC vaccination (N=15). Conclusion Overall, GAPVAC displayed expected safety profiles and high biological activity indicating further development.</description><subject>Oral Presentations</subject><issn>1522-8517</issn><issn>1523-5866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkN9KwzAUh4MoOKcP4F0ewG5J2ySNF8IYugmDCf65DWmadJEuKUm3MZ_eakXwzqtzDud8Pw4fANcYTTDi2dTpnXdq6vwRZ3yCMDkBI0zSLCEFpafffZoUBLNzcBHjO0IpJhSPgFs_p5MULm29aY6w1SF6Jxv7oat-aDtbabiXSlknO-sdND7Atm-16yI82G4DnT70YGVl7Xzsqbqxvmxk7PxW3sJuo-Fi9vQ2m8MuWNlcgjMjm6ivfuoYvD7cv8yXyWq9eJzPVonCjJGEmYKXCkluioJxLFGlDJE5l5KUWDFKGUOUl0YbrnleZCkvTKnSnGYUl7zA2RjcDbntrtzqSvX_BtmINtitDEfhpRV_N85uRO33guI8JxnrA_AQoIKPMWjzy2IkvoyLwbgYjIveeM_cDIzftf84_wT8PIjP</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Dietrich, P</creator><creator>Wick, W</creator><creator>Hilf, N</creator><creator>Frenzel, K</creator><creator>Gouttefangeas, C</creator><creator>Platten, M</creator><creator>thor Straten, P</creator><creator>Lassen, U</creator><creator>Rodon, J</creator><creator>Bukur, V</creator><creator>Admon, A</creator><creator>van der Burg, S H</creator><creator>von Deimling, A</creator><creator>Kroep, J R</creator><creator>Martinez-Ricarte, F</creator><creator>Okada, H</creator><creator>Ottensmeier, C H</creator><creator>Ponsati, B</creator><creator>Poulsen, H S</creator><creator>Stevanovic, S</creator><creator>Tabatabai, G</creator><creator>Rammensee, H</creator><creator>Sahin, U</creator><creator>Singh-Jasuja, H</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20180919</creationdate><title>OS2.2 Highly personalized peptide vaccination for patients with newly diagnosed glioblastoma: the GAPVAC trial</title><author>Dietrich, P ; Wick, W ; Hilf, N ; Frenzel, K ; Gouttefangeas, C ; Platten, M ; thor Straten, P ; Lassen, U ; Rodon, J ; Bukur, V ; Admon, A ; van der Burg, S H ; von Deimling, A ; Kroep, J R ; Martinez-Ricarte, F ; Okada, H ; Ottensmeier, C H ; Ponsati, B ; Poulsen, H S ; Stevanovic, S ; Tabatabai, G ; Rammensee, H ; Sahin, U ; Singh-Jasuja, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1775-7f89bc0a9f88791a0dcf5a49aa5b1c76677069bfef9e9483298fbc246361b9813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Oral Presentations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dietrich, P</creatorcontrib><creatorcontrib>Wick, W</creatorcontrib><creatorcontrib>Hilf, N</creatorcontrib><creatorcontrib>Frenzel, K</creatorcontrib><creatorcontrib>Gouttefangeas, C</creatorcontrib><creatorcontrib>Platten, M</creatorcontrib><creatorcontrib>thor Straten, P</creatorcontrib><creatorcontrib>Lassen, U</creatorcontrib><creatorcontrib>Rodon, J</creatorcontrib><creatorcontrib>Bukur, V</creatorcontrib><creatorcontrib>Admon, A</creatorcontrib><creatorcontrib>van der Burg, S H</creatorcontrib><creatorcontrib>von Deimling, A</creatorcontrib><creatorcontrib>Kroep, J R</creatorcontrib><creatorcontrib>Martinez-Ricarte, F</creatorcontrib><creatorcontrib>Okada, H</creatorcontrib><creatorcontrib>Ottensmeier, C H</creatorcontrib><creatorcontrib>Ponsati, B</creatorcontrib><creatorcontrib>Poulsen, H S</creatorcontrib><creatorcontrib>Stevanovic, S</creatorcontrib><creatorcontrib>Tabatabai, G</creatorcontrib><creatorcontrib>Rammensee, H</creatorcontrib><creatorcontrib>Sahin, U</creatorcontrib><creatorcontrib>Singh-Jasuja, H</creatorcontrib><creatorcontrib>GAPVAC Consortium</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dietrich, P</au><au>Wick, W</au><au>Hilf, N</au><au>Frenzel, K</au><au>Gouttefangeas, C</au><au>Platten, M</au><au>thor Straten, P</au><au>Lassen, U</au><au>Rodon, J</au><au>Bukur, V</au><au>Admon, A</au><au>van der Burg, S H</au><au>von Deimling, A</au><au>Kroep, J R</au><au>Martinez-Ricarte, F</au><au>Okada, H</au><au>Ottensmeier, C H</au><au>Ponsati, B</au><au>Poulsen, H S</au><au>Stevanovic, S</au><au>Tabatabai, G</au><au>Rammensee, H</au><au>Sahin, U</au><au>Singh-Jasuja, H</au><aucorp>GAPVAC Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OS2.2 Highly personalized peptide vaccination for patients with newly diagnosed glioblastoma: the GAPVAC trial</atitle><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle><date>2018-09-19</date><risdate>2018</risdate><volume>20</volume><issue>suppl_3</issue><spage>iii219</spage><epage>iii219</epage><pages>iii219-iii219</pages><issn>1522-8517</issn><eissn>1523-5866</eissn><abstract>Abstract Background There is a need for treatment personalization as every cancer is molecularly unique. In addition glioblastoma (GB) are immunologically regarded as resistant, “cold” tumor with few targetable antigens available from mutations, thus demanding new personalized immunotherapies. So far outside Neuro-Oncology, T cells orchestrate impressive anti-tumor effects with checkpoint inhibitors, but also vaccines. Material and Methods The GAPVAC consortium established an immunotherapy, for which personalized selection of 2 peptide-based actively personalized vaccines (APVAC) per patient for treatment of newly diagnosed GB was based not only on whole-exome sequencing but also on human leukocyte antigen (HLA)-ligandome analyses providing insight into the actual presentation of relevant epitopes in the tumor. GAPVAC-101 (NCT02149225) enrolled 16 patients in a European phase I feasibility, safety and immunogenicity trial integrated into standard of care. For APVAC1, up to 7 peptides were selected from a trial specific warehouse based on individual biomarker data. Vaccination (i.d.) with GM-CSF and poly-ICLC in 15 patients started with the 1st adjuvant cycle of temozolomide (TMZ). For APVAC2, analyses revealed a median of 36 somatic, non-synonymous mutations in the patients’ tumors. From the 4th TMZ cycle, 11 patients received APVAC2 with usually 2 de novo antigens per patient selected according to mutation, actual or putative HLA presentation and immunogenicity. Overall 20 APVAC2 antigens incl. 14 mutated were vaccinated. Results Adverse events were largely reversible injection site reactions and two anaphylactic reactions and one increase in cerebral edema. Short, non-mutated APVAC1 antigens induced sustained CD8 responses with memory phenotype. Mutated APVAC2 antigens induced predominantly CD4 responses of favorable TH1 type. Median PFS and OS were 14.2 and 29 months from diagnosis, respectively, in patients that received ≥1 APVAC vaccination (N=15). Conclusion Overall, GAPVAC displayed expected safety profiles and high biological activity indicating further development.</abstract><cop>US</cop><pub>Oxford University Press</pub><doi>10.1093/neuonc/noy139.015</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1522-8517
ispartof Neuro-oncology (Charlottesville, Va.), 2018-09, Vol.20 (suppl_3), p.iii219-iii219
issn 1522-8517
1523-5866
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6144537
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); PubMed Central
subjects Oral Presentations
title OS2.2 Highly personalized peptide vaccination for patients with newly diagnosed glioblastoma: the GAPVAC trial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OS2.2%20Highly%20personalized%20peptide%20vaccination%20for%20patients%20with%20newly%20diagnosed%20glioblastoma:%20the%20GAPVAC%20trial&rft.jtitle=Neuro-oncology%20(Charlottesville,%20Va.)&rft.au=Dietrich,%20P&rft.aucorp=GAPVAC%20Consortium&rft.date=2018-09-19&rft.volume=20&rft.issue=suppl_3&rft.spage=iii219&rft.epage=iii219&rft.pages=iii219-iii219&rft.issn=1522-8517&rft.eissn=1523-5866&rft_id=info:doi/10.1093/neuonc/noy139.015&rft_dat=%3Coup_pubme%3E10.1093/neuonc/noy139.015%3C/oup_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/neuonc/noy139.015&rfr_iscdi=true