Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease

The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-07, Vol.115 (27), p.E6310-E6318
Hauptverfasser: Ding, Qiang, Gaska, Jenna M., Douam, Florian, Wei, Lei, Kim, David, Balev, Metodi, Heller, Brigitte, Ploss, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E6318
container_issue 27
container_start_page E6310
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Ding, Qiang
Gaska, Jenna M.
Douam, Florian
Wei, Lei
Kim, David
Balev, Metodi
Heller, Brigitte
Ploss, Alexander
description The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.
doi_str_mv 10.1073/pnas.1803406115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6142274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26511109</jstor_id><sourcerecordid>26511109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-74579cb93a223993af8e0cd64682b6257a412153ff7bac2fcefb53f0f0060d33</originalsourceid><addsrcrecordid>eNpdkkFv1DAQhS0EokvhzAlkiQuXtGPHjuMLUqmgVKrKYffExXKcMfU2Gwc7qdR_j1dbWuD0ZM3np3l-JuQtgxMGqj6dRptPWAu1gIYx-YysGGhWNULDc7IC4KpqBRdH5FXOWwDQsoWX5IhrzSSodkVu1xO6gLnKe_XB0T7ktExziCONnq43l9cXVY8Tjj2OM7XjHO5CsgN1OAzLYBPt0eOYMdPuns43SH-EW0sLs2R6veafazqlOKPN-Jq88HbI-OZBj8nm65fN-bfq6vvF5fnZVeUk6LlSQirtOl1bzmtdxLcIrm9E0_Ku4VJZwTiTtfeqs457h74rJ_AADfR1fUw-HWynpdth78raZV8zpbCz6d5EG8y_kzHcmJ_xzjRMcK5EMfj4YJDirwXzbHYh7-PaEeOSDQepymNLpgr64T90G5c0lnSGM2BagYK2UKcHyqWYc0L_uAwDs-_R7Hs0Tz2WG-__zvDI_ymuAO8OwDbPMT3NG8lY-QL1b-Lyo9U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101970708</pqid></control><display><type>article</type><title>Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ding, Qiang ; Gaska, Jenna M. ; Douam, Florian ; Wei, Lei ; Kim, David ; Balev, Metodi ; Heller, Brigitte ; Ploss, Alexander</creator><creatorcontrib>Ding, Qiang ; Gaska, Jenna M. ; Douam, Florian ; Wei, Lei ; Kim, David ; Balev, Metodi ; Heller, Brigitte ; Ploss, Alexander</creatorcontrib><description>The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1803406115</identifier><identifier>PMID: 29915078</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antiviral drugs ; Apes ; Biodiversity ; Biological Sciences ; Chlorocebus aethiops ; Cleavage ; Cyclic GMP ; Dengue fever ; Disease control ; Disruption ; Encephalitis ; Fever ; Fibroblasts ; HEK293 Cells ; Host range ; Humans ; Immunity, Innate ; Infections ; Interferon ; Membrane Proteins - genetics ; Membrane Proteins - immunology ; Mice ; Monkeys ; Peptide Hydrolases - genetics ; Peptide Hydrolases - immunology ; Permissivity ; Phenotypes ; PNAS Plus ; Primates ; Protease ; Proteases ; Proteinase ; Proteolysis ; Ribonucleic acid ; RNA ; RNA viruses ; Rodents ; Signal transduction ; Signal Transduction - genetics ; Signal Transduction - immunology ; Signaling ; Species Specificity ; Stimulators ; Tropism ; Vector-borne diseases ; Vero Cells ; Viral diseases ; Viral Nonstructural Proteins - genetics ; Viral Nonstructural Proteins - immunology ; Viruses ; West Nile virus ; Zika virus ; Zika Virus - genetics ; Zika Virus - immunology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-07, Vol.115 (27), p.E6310-E6318</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jul 3, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-74579cb93a223993af8e0cd64682b6257a412153ff7bac2fcefb53f0f0060d33</citedby><cites>FETCH-LOGICAL-c509t-74579cb93a223993af8e0cd64682b6257a412153ff7bac2fcefb53f0f0060d33</cites><orcidid>0000-0001-9322-7252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26511109$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26511109$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29915078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Qiang</creatorcontrib><creatorcontrib>Gaska, Jenna M.</creatorcontrib><creatorcontrib>Douam, Florian</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Kim, David</creatorcontrib><creatorcontrib>Balev, Metodi</creatorcontrib><creatorcontrib>Heller, Brigitte</creatorcontrib><creatorcontrib>Ploss, Alexander</creatorcontrib><title>Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.</description><subject>Animals</subject><subject>Antiviral drugs</subject><subject>Apes</subject><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>Chlorocebus aethiops</subject><subject>Cleavage</subject><subject>Cyclic GMP</subject><subject>Dengue fever</subject><subject>Disease control</subject><subject>Disruption</subject><subject>Encephalitis</subject><subject>Fever</subject><subject>Fibroblasts</subject><subject>HEK293 Cells</subject><subject>Host range</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Infections</subject><subject>Interferon</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - immunology</subject><subject>Mice</subject><subject>Monkeys</subject><subject>Peptide Hydrolases - genetics</subject><subject>Peptide Hydrolases - immunology</subject><subject>Permissivity</subject><subject>Phenotypes</subject><subject>PNAS Plus</subject><subject>Primates</subject><subject>Protease</subject><subject>Proteases</subject><subject>Proteinase</subject><subject>Proteolysis</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA viruses</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - immunology</subject><subject>Signaling</subject><subject>Species Specificity</subject><subject>Stimulators</subject><subject>Tropism</subject><subject>Vector-borne diseases</subject><subject>Vero Cells</subject><subject>Viral diseases</subject><subject>Viral Nonstructural Proteins - genetics</subject><subject>Viral Nonstructural Proteins - immunology</subject><subject>Viruses</subject><subject>West Nile virus</subject><subject>Zika virus</subject><subject>Zika Virus - genetics</subject><subject>Zika Virus - immunology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkkFv1DAQhS0EokvhzAlkiQuXtGPHjuMLUqmgVKrKYffExXKcMfU2Gwc7qdR_j1dbWuD0ZM3np3l-JuQtgxMGqj6dRptPWAu1gIYx-YysGGhWNULDc7IC4KpqBRdH5FXOWwDQsoWX5IhrzSSodkVu1xO6gLnKe_XB0T7ktExziCONnq43l9cXVY8Tjj2OM7XjHO5CsgN1OAzLYBPt0eOYMdPuns43SH-EW0sLs2R6veafazqlOKPN-Jq88HbI-OZBj8nm65fN-bfq6vvF5fnZVeUk6LlSQirtOl1bzmtdxLcIrm9E0_Ku4VJZwTiTtfeqs457h74rJ_AADfR1fUw-HWynpdth78raZV8zpbCz6d5EG8y_kzHcmJ_xzjRMcK5EMfj4YJDirwXzbHYh7-PaEeOSDQepymNLpgr64T90G5c0lnSGM2BagYK2UKcHyqWYc0L_uAwDs-_R7Hs0Tz2WG-__zvDI_ymuAO8OwDbPMT3NG8lY-QL1b-Lyo9U</recordid><startdate>20180703</startdate><enddate>20180703</enddate><creator>Ding, Qiang</creator><creator>Gaska, Jenna M.</creator><creator>Douam, Florian</creator><creator>Wei, Lei</creator><creator>Kim, David</creator><creator>Balev, Metodi</creator><creator>Heller, Brigitte</creator><creator>Ploss, Alexander</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9322-7252</orcidid></search><sort><creationdate>20180703</creationdate><title>Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease</title><author>Ding, Qiang ; Gaska, Jenna M. ; Douam, Florian ; Wei, Lei ; Kim, David ; Balev, Metodi ; Heller, Brigitte ; Ploss, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-74579cb93a223993af8e0cd64682b6257a412153ff7bac2fcefb53f0f0060d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antiviral drugs</topic><topic>Apes</topic><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>Chlorocebus aethiops</topic><topic>Cleavage</topic><topic>Cyclic GMP</topic><topic>Dengue fever</topic><topic>Disease control</topic><topic>Disruption</topic><topic>Encephalitis</topic><topic>Fever</topic><topic>Fibroblasts</topic><topic>HEK293 Cells</topic><topic>Host range</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Infections</topic><topic>Interferon</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - immunology</topic><topic>Mice</topic><topic>Monkeys</topic><topic>Peptide Hydrolases - genetics</topic><topic>Peptide Hydrolases - immunology</topic><topic>Permissivity</topic><topic>Phenotypes</topic><topic>PNAS Plus</topic><topic>Primates</topic><topic>Protease</topic><topic>Proteases</topic><topic>Proteinase</topic><topic>Proteolysis</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA viruses</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - immunology</topic><topic>Signaling</topic><topic>Species Specificity</topic><topic>Stimulators</topic><topic>Tropism</topic><topic>Vector-borne diseases</topic><topic>Vero Cells</topic><topic>Viral diseases</topic><topic>Viral Nonstructural Proteins - genetics</topic><topic>Viral Nonstructural Proteins - immunology</topic><topic>Viruses</topic><topic>West Nile virus</topic><topic>Zika virus</topic><topic>Zika Virus - genetics</topic><topic>Zika Virus - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Qiang</creatorcontrib><creatorcontrib>Gaska, Jenna M.</creatorcontrib><creatorcontrib>Douam, Florian</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Kim, David</creatorcontrib><creatorcontrib>Balev, Metodi</creatorcontrib><creatorcontrib>Heller, Brigitte</creatorcontrib><creatorcontrib>Ploss, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Qiang</au><au>Gaska, Jenna M.</au><au>Douam, Florian</au><au>Wei, Lei</au><au>Kim, David</au><au>Balev, Metodi</au><au>Heller, Brigitte</au><au>Ploss, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-07-03</date><risdate>2018</risdate><volume>115</volume><issue>27</issue><spage>E6310</spage><epage>E6318</epage><pages>E6310-E6318</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29915078</pmid><doi>10.1073/pnas.1803406115</doi><orcidid>https://orcid.org/0000-0001-9322-7252</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-07, Vol.115 (27), p.E6310-E6318
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6142274
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Antiviral drugs
Apes
Biodiversity
Biological Sciences
Chlorocebus aethiops
Cleavage
Cyclic GMP
Dengue fever
Disease control
Disruption
Encephalitis
Fever
Fibroblasts
HEK293 Cells
Host range
Humans
Immunity, Innate
Infections
Interferon
Membrane Proteins - genetics
Membrane Proteins - immunology
Mice
Monkeys
Peptide Hydrolases - genetics
Peptide Hydrolases - immunology
Permissivity
Phenotypes
PNAS Plus
Primates
Protease
Proteases
Proteinase
Proteolysis
Ribonucleic acid
RNA
RNA viruses
Rodents
Signal transduction
Signal Transduction - genetics
Signal Transduction - immunology
Signaling
Species Specificity
Stimulators
Tropism
Vector-borne diseases
Vero Cells
Viral diseases
Viral Nonstructural Proteins - genetics
Viral Nonstructural Proteins - immunology
Viruses
West Nile virus
Zika virus
Zika Virus - genetics
Zika Virus - immunology
title Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Species-specific%20disruption%20of%20STING-dependent%20antiviral%20cellular%20defenses%20by%20the%20Zika%20virus%20NS2B3%20protease&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ding,%20Qiang&rft.date=2018-07-03&rft.volume=115&rft.issue=27&rft.spage=E6310&rft.epage=E6318&rft.pages=E6310-E6318&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1803406115&rft_dat=%3Cjstor_pubme%3E26511109%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101970708&rft_id=info:pmid/29915078&rft_jstor_id=26511109&rfr_iscdi=true