Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease
The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-07, Vol.115 (27), p.E6310-E6318 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E6318 |
---|---|
container_issue | 27 |
container_start_page | E6310 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Ding, Qiang Gaska, Jenna M. Douam, Florian Wei, Lei Kim, David Balev, Metodi Heller, Brigitte Ploss, Alexander |
description | The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses. |
doi_str_mv | 10.1073/pnas.1803406115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6142274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26511109</jstor_id><sourcerecordid>26511109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-74579cb93a223993af8e0cd64682b6257a412153ff7bac2fcefb53f0f0060d33</originalsourceid><addsrcrecordid>eNpdkkFv1DAQhS0EokvhzAlkiQuXtGPHjuMLUqmgVKrKYffExXKcMfU2Gwc7qdR_j1dbWuD0ZM3np3l-JuQtgxMGqj6dRptPWAu1gIYx-YysGGhWNULDc7IC4KpqBRdH5FXOWwDQsoWX5IhrzSSodkVu1xO6gLnKe_XB0T7ktExziCONnq43l9cXVY8Tjj2OM7XjHO5CsgN1OAzLYBPt0eOYMdPuns43SH-EW0sLs2R6veafazqlOKPN-Jq88HbI-OZBj8nm65fN-bfq6vvF5fnZVeUk6LlSQirtOl1bzmtdxLcIrm9E0_Ku4VJZwTiTtfeqs457h74rJ_AADfR1fUw-HWynpdth78raZV8zpbCz6d5EG8y_kzHcmJ_xzjRMcK5EMfj4YJDirwXzbHYh7-PaEeOSDQepymNLpgr64T90G5c0lnSGM2BagYK2UKcHyqWYc0L_uAwDs-_R7Hs0Tz2WG-__zvDI_ymuAO8OwDbPMT3NG8lY-QL1b-Lyo9U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101970708</pqid></control><display><type>article</type><title>Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ding, Qiang ; Gaska, Jenna M. ; Douam, Florian ; Wei, Lei ; Kim, David ; Balev, Metodi ; Heller, Brigitte ; Ploss, Alexander</creator><creatorcontrib>Ding, Qiang ; Gaska, Jenna M. ; Douam, Florian ; Wei, Lei ; Kim, David ; Balev, Metodi ; Heller, Brigitte ; Ploss, Alexander</creatorcontrib><description>The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1803406115</identifier><identifier>PMID: 29915078</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antiviral drugs ; Apes ; Biodiversity ; Biological Sciences ; Chlorocebus aethiops ; Cleavage ; Cyclic GMP ; Dengue fever ; Disease control ; Disruption ; Encephalitis ; Fever ; Fibroblasts ; HEK293 Cells ; Host range ; Humans ; Immunity, Innate ; Infections ; Interferon ; Membrane Proteins - genetics ; Membrane Proteins - immunology ; Mice ; Monkeys ; Peptide Hydrolases - genetics ; Peptide Hydrolases - immunology ; Permissivity ; Phenotypes ; PNAS Plus ; Primates ; Protease ; Proteases ; Proteinase ; Proteolysis ; Ribonucleic acid ; RNA ; RNA viruses ; Rodents ; Signal transduction ; Signal Transduction - genetics ; Signal Transduction - immunology ; Signaling ; Species Specificity ; Stimulators ; Tropism ; Vector-borne diseases ; Vero Cells ; Viral diseases ; Viral Nonstructural Proteins - genetics ; Viral Nonstructural Proteins - immunology ; Viruses ; West Nile virus ; Zika virus ; Zika Virus - genetics ; Zika Virus - immunology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-07, Vol.115 (27), p.E6310-E6318</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jul 3, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-74579cb93a223993af8e0cd64682b6257a412153ff7bac2fcefb53f0f0060d33</citedby><cites>FETCH-LOGICAL-c509t-74579cb93a223993af8e0cd64682b6257a412153ff7bac2fcefb53f0f0060d33</cites><orcidid>0000-0001-9322-7252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26511109$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26511109$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29915078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Qiang</creatorcontrib><creatorcontrib>Gaska, Jenna M.</creatorcontrib><creatorcontrib>Douam, Florian</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Kim, David</creatorcontrib><creatorcontrib>Balev, Metodi</creatorcontrib><creatorcontrib>Heller, Brigitte</creatorcontrib><creatorcontrib>Ploss, Alexander</creatorcontrib><title>Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.</description><subject>Animals</subject><subject>Antiviral drugs</subject><subject>Apes</subject><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>Chlorocebus aethiops</subject><subject>Cleavage</subject><subject>Cyclic GMP</subject><subject>Dengue fever</subject><subject>Disease control</subject><subject>Disruption</subject><subject>Encephalitis</subject><subject>Fever</subject><subject>Fibroblasts</subject><subject>HEK293 Cells</subject><subject>Host range</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Infections</subject><subject>Interferon</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - immunology</subject><subject>Mice</subject><subject>Monkeys</subject><subject>Peptide Hydrolases - genetics</subject><subject>Peptide Hydrolases - immunology</subject><subject>Permissivity</subject><subject>Phenotypes</subject><subject>PNAS Plus</subject><subject>Primates</subject><subject>Protease</subject><subject>Proteases</subject><subject>Proteinase</subject><subject>Proteolysis</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA viruses</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - immunology</subject><subject>Signaling</subject><subject>Species Specificity</subject><subject>Stimulators</subject><subject>Tropism</subject><subject>Vector-borne diseases</subject><subject>Vero Cells</subject><subject>Viral diseases</subject><subject>Viral Nonstructural Proteins - genetics</subject><subject>Viral Nonstructural Proteins - immunology</subject><subject>Viruses</subject><subject>West Nile virus</subject><subject>Zika virus</subject><subject>Zika Virus - genetics</subject><subject>Zika Virus - immunology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkkFv1DAQhS0EokvhzAlkiQuXtGPHjuMLUqmgVKrKYffExXKcMfU2Gwc7qdR_j1dbWuD0ZM3np3l-JuQtgxMGqj6dRptPWAu1gIYx-YysGGhWNULDc7IC4KpqBRdH5FXOWwDQsoWX5IhrzSSodkVu1xO6gLnKe_XB0T7ktExziCONnq43l9cXVY8Tjj2OM7XjHO5CsgN1OAzLYBPt0eOYMdPuns43SH-EW0sLs2R6veafazqlOKPN-Jq88HbI-OZBj8nm65fN-bfq6vvF5fnZVeUk6LlSQirtOl1bzmtdxLcIrm9E0_Ku4VJZwTiTtfeqs457h74rJ_AADfR1fUw-HWynpdth78raZV8zpbCz6d5EG8y_kzHcmJ_xzjRMcK5EMfj4YJDirwXzbHYh7-PaEeOSDQepymNLpgr64T90G5c0lnSGM2BagYK2UKcHyqWYc0L_uAwDs-_R7Hs0Tz2WG-__zvDI_ymuAO8OwDbPMT3NG8lY-QL1b-Lyo9U</recordid><startdate>20180703</startdate><enddate>20180703</enddate><creator>Ding, Qiang</creator><creator>Gaska, Jenna M.</creator><creator>Douam, Florian</creator><creator>Wei, Lei</creator><creator>Kim, David</creator><creator>Balev, Metodi</creator><creator>Heller, Brigitte</creator><creator>Ploss, Alexander</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9322-7252</orcidid></search><sort><creationdate>20180703</creationdate><title>Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease</title><author>Ding, Qiang ; Gaska, Jenna M. ; Douam, Florian ; Wei, Lei ; Kim, David ; Balev, Metodi ; Heller, Brigitte ; Ploss, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-74579cb93a223993af8e0cd64682b6257a412153ff7bac2fcefb53f0f0060d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antiviral drugs</topic><topic>Apes</topic><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>Chlorocebus aethiops</topic><topic>Cleavage</topic><topic>Cyclic GMP</topic><topic>Dengue fever</topic><topic>Disease control</topic><topic>Disruption</topic><topic>Encephalitis</topic><topic>Fever</topic><topic>Fibroblasts</topic><topic>HEK293 Cells</topic><topic>Host range</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Infections</topic><topic>Interferon</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - immunology</topic><topic>Mice</topic><topic>Monkeys</topic><topic>Peptide Hydrolases - genetics</topic><topic>Peptide Hydrolases - immunology</topic><topic>Permissivity</topic><topic>Phenotypes</topic><topic>PNAS Plus</topic><topic>Primates</topic><topic>Protease</topic><topic>Proteases</topic><topic>Proteinase</topic><topic>Proteolysis</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA viruses</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - immunology</topic><topic>Signaling</topic><topic>Species Specificity</topic><topic>Stimulators</topic><topic>Tropism</topic><topic>Vector-borne diseases</topic><topic>Vero Cells</topic><topic>Viral diseases</topic><topic>Viral Nonstructural Proteins - genetics</topic><topic>Viral Nonstructural Proteins - immunology</topic><topic>Viruses</topic><topic>West Nile virus</topic><topic>Zika virus</topic><topic>Zika Virus - genetics</topic><topic>Zika Virus - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Qiang</creatorcontrib><creatorcontrib>Gaska, Jenna M.</creatorcontrib><creatorcontrib>Douam, Florian</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Kim, David</creatorcontrib><creatorcontrib>Balev, Metodi</creatorcontrib><creatorcontrib>Heller, Brigitte</creatorcontrib><creatorcontrib>Ploss, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Qiang</au><au>Gaska, Jenna M.</au><au>Douam, Florian</au><au>Wei, Lei</au><au>Kim, David</au><au>Balev, Metodi</au><au>Heller, Brigitte</au><au>Ploss, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-07-03</date><risdate>2018</risdate><volume>115</volume><issue>27</issue><spage>E6310</spage><epage>E6318</epage><pages>E6310-E6318</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29915078</pmid><doi>10.1073/pnas.1803406115</doi><orcidid>https://orcid.org/0000-0001-9322-7252</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-07, Vol.115 (27), p.E6310-E6318 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6142274 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Antiviral drugs Apes Biodiversity Biological Sciences Chlorocebus aethiops Cleavage Cyclic GMP Dengue fever Disease control Disruption Encephalitis Fever Fibroblasts HEK293 Cells Host range Humans Immunity, Innate Infections Interferon Membrane Proteins - genetics Membrane Proteins - immunology Mice Monkeys Peptide Hydrolases - genetics Peptide Hydrolases - immunology Permissivity Phenotypes PNAS Plus Primates Protease Proteases Proteinase Proteolysis Ribonucleic acid RNA RNA viruses Rodents Signal transduction Signal Transduction - genetics Signal Transduction - immunology Signaling Species Specificity Stimulators Tropism Vector-borne diseases Vero Cells Viral diseases Viral Nonstructural Proteins - genetics Viral Nonstructural Proteins - immunology Viruses West Nile virus Zika virus Zika Virus - genetics Zika Virus - immunology |
title | Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Species-specific%20disruption%20of%20STING-dependent%20antiviral%20cellular%20defenses%20by%20the%20Zika%20virus%20NS2B3%20protease&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ding,%20Qiang&rft.date=2018-07-03&rft.volume=115&rft.issue=27&rft.spage=E6310&rft.epage=E6318&rft.pages=E6310-E6318&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1803406115&rft_dat=%3Cjstor_pubme%3E26511109%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101970708&rft_id=info:pmid/29915078&rft_jstor_id=26511109&rfr_iscdi=true |