Estimating the probability of exceeding the maximum residue limit for Japanese tea using a crop residue model

Maximum residue limits (MRLs) for pesticides in export countries from Japan often become a trade barrier for Japanese tea. The purpose of this study is to develop a probabilistic risk estimation method for pesticide residues in green tea. First, we developed a model to estimate the pesticide residue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Pesticide Science 2017/05/20, Vol.42(2), pp.32-38
Hauptverfasser: Shiga, Yuki, Yamaguchi, Haruko, Tokai, Akihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 2
container_start_page 32
container_title Journal of Pesticide Science
container_volume 42
creator Shiga, Yuki
Yamaguchi, Haruko
Tokai, Akihiro
description Maximum residue limits (MRLs) for pesticides in export countries from Japan often become a trade barrier for Japanese tea. The purpose of this study is to develop a probabilistic risk estimation method for pesticide residues in green tea. First, we developed a model to estimate the pesticide residue level in green tea. Second, we introduced a regression model for pesticide half-lives on plants, one of the most critical parameters in the model. Finally, we estimated the time-course change of the distribution of the residue level by setting the probability distribution to the half-lives on tea leaves. Applying the model to three pesticides, acetamiprid, dinotefuran, and thiamethoxam, we suggested that the pre-harvest interval of thiamethoxam should be increased by three weeks for export to Taiwan. For EU nations, the MRL excess probabilities of acetamiprid and dinotefuran were measured as 99.6% and 99.5%, respectively, even 28 days after spraying.
doi_str_mv 10.1584/jpestics.D16-090
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6140641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126911196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-54f8da7b38c54670e4d9c228535016cfbecd91817a70588e1268afe9b07775733</originalsourceid><addsrcrecordid>eNpdUU1v1DAQjRCIVqV3TsgSFy5b_JH444KESltAlbiAxM1ynMmuV0kc7KTq_nsm7EeBgz0jzZs38-YVxWtGr1ily_fbEfIUfL76xOSKGvqsOGeiNJhy8fxPrleVNj_Pisuct5RSpoQyRr4szgQVUjCmz4v-Bjl6N4VhTaYNkDHF2tWhC9OOxJbAowdojsXePYZ-7kmCHJoZSBf6MJE2JvLVjW6ADGQCR-a8NDjiUxxP2D420L0qXrSuy3B5iBfFj9ub79efV_ff7r5cf7xfeUn5tKrKVjdO1UL7qpSKQtkYz7muREWZ9G0NvjFMM-UUrbQGxqV2LZiaKqUqJcRF8WHPO851D42HYUqus2NCqWlnowv238oQNnYdH6xkJZUlQ4J3B4IUf814Z9uH7KHrUGWcs-U40jDGjETo2_-g2zinAeVZZqhcjl5yRNE9Co-Sc4L2tAyjdrHTHu20aKdFO7Hlzd8iTg1H8xBwtwdgNXjXxaELAzyN9zuxkHrL0XpLaYkRQ4VP8OXTXCvJxSL3ds-0zZNbw2mUS7hRB0-7ldzy5TvseAL4jUsWBvEb2BXOfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906173742</pqid></control><display><type>article</type><title>Estimating the probability of exceeding the maximum residue limit for Japanese tea using a crop residue model</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>PubMed Central</source><creator>Shiga, Yuki ; Yamaguchi, Haruko ; Tokai, Akihiro</creator><creatorcontrib>Shiga, Yuki ; Yamaguchi, Haruko ; Tokai, Akihiro ; Osaka University ; Graduate School of Engineering ; National Institute of Health and Science</creatorcontrib><description>Maximum residue limits (MRLs) for pesticides in export countries from Japan often become a trade barrier for Japanese tea. The purpose of this study is to develop a probabilistic risk estimation method for pesticide residues in green tea. First, we developed a model to estimate the pesticide residue level in green tea. Second, we introduced a regression model for pesticide half-lives on plants, one of the most critical parameters in the model. Finally, we estimated the time-course change of the distribution of the residue level by setting the probability distribution to the half-lives on tea leaves. Applying the model to three pesticides, acetamiprid, dinotefuran, and thiamethoxam, we suggested that the pre-harvest interval of thiamethoxam should be increased by three weeks for export to Taiwan. For EU nations, the MRL excess probabilities of acetamiprid and dinotefuran were measured as 99.6% and 99.5%, respectively, even 28 days after spraying.</description><identifier>ISSN: 1348-589X</identifier><identifier>EISSN: 1349-0923</identifier><identifier>DOI: 10.1584/jpestics.D16-090</identifier><identifier>PMID: 30363118</identifier><language>eng</language><publisher>Japan: Pesticide Science Society of Japan</publisher><subject>Agrochemicals ; crop residue ; Crop residues ; Crops ; dynamic plant uptake model ; Estimation ; Exports ; Green tea ; Half-life ; Insecticides ; Japanese tea export ; Leaves ; Mathematical models ; maximum residue limit ; Nations ; Original ; Parameter estimation ; Pesticide residues ; Pesticides ; Probabilistic methods ; probabilistic risk estimation ; Probability distribution ; Probability theory ; Regression ; Residues ; Risk ; Spraying ; Tea ; Tetraethylammonium ; Thiamethoxam ; Trade</subject><ispartof>Journal of Pesticide Science, 2017/05/20, Vol.42(2), pp.32-38</ispartof><rights>2017 Pesticide Science Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><rights>2017 Pesticide Science Society of Japan 2017 Pesticide Science Society of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-54f8da7b38c54670e4d9c228535016cfbecd91817a70588e1268afe9b07775733</citedby><cites>FETCH-LOGICAL-c602t-54f8da7b38c54670e4d9c228535016cfbecd91817a70588e1268afe9b07775733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140641/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140641/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1884,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30363118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiga, Yuki</creatorcontrib><creatorcontrib>Yamaguchi, Haruko</creatorcontrib><creatorcontrib>Tokai, Akihiro</creatorcontrib><creatorcontrib>Osaka University</creatorcontrib><creatorcontrib>Graduate School of Engineering</creatorcontrib><creatorcontrib>National Institute of Health and Science</creatorcontrib><title>Estimating the probability of exceeding the maximum residue limit for Japanese tea using a crop residue model</title><title>Journal of Pesticide Science</title><addtitle>J. Pestic. Sci.</addtitle><description>Maximum residue limits (MRLs) for pesticides in export countries from Japan often become a trade barrier for Japanese tea. The purpose of this study is to develop a probabilistic risk estimation method for pesticide residues in green tea. First, we developed a model to estimate the pesticide residue level in green tea. Second, we introduced a regression model for pesticide half-lives on plants, one of the most critical parameters in the model. Finally, we estimated the time-course change of the distribution of the residue level by setting the probability distribution to the half-lives on tea leaves. Applying the model to three pesticides, acetamiprid, dinotefuran, and thiamethoxam, we suggested that the pre-harvest interval of thiamethoxam should be increased by three weeks for export to Taiwan. For EU nations, the MRL excess probabilities of acetamiprid and dinotefuran were measured as 99.6% and 99.5%, respectively, even 28 days after spraying.</description><subject>Agrochemicals</subject><subject>crop residue</subject><subject>Crop residues</subject><subject>Crops</subject><subject>dynamic plant uptake model</subject><subject>Estimation</subject><subject>Exports</subject><subject>Green tea</subject><subject>Half-life</subject><subject>Insecticides</subject><subject>Japanese tea export</subject><subject>Leaves</subject><subject>Mathematical models</subject><subject>maximum residue limit</subject><subject>Nations</subject><subject>Original</subject><subject>Parameter estimation</subject><subject>Pesticide residues</subject><subject>Pesticides</subject><subject>Probabilistic methods</subject><subject>probabilistic risk estimation</subject><subject>Probability distribution</subject><subject>Probability theory</subject><subject>Regression</subject><subject>Residues</subject><subject>Risk</subject><subject>Spraying</subject><subject>Tea</subject><subject>Tetraethylammonium</subject><subject>Thiamethoxam</subject><subject>Trade</subject><issn>1348-589X</issn><issn>1349-0923</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdUU1v1DAQjRCIVqV3TsgSFy5b_JH444KESltAlbiAxM1ynMmuV0kc7KTq_nsm7EeBgz0jzZs38-YVxWtGr1ily_fbEfIUfL76xOSKGvqsOGeiNJhy8fxPrleVNj_Pisuct5RSpoQyRr4szgQVUjCmz4v-Bjl6N4VhTaYNkDHF2tWhC9OOxJbAowdojsXePYZ-7kmCHJoZSBf6MJE2JvLVjW6ADGQCR-a8NDjiUxxP2D420L0qXrSuy3B5iBfFj9ub79efV_ff7r5cf7xfeUn5tKrKVjdO1UL7qpSKQtkYz7muREWZ9G0NvjFMM-UUrbQGxqV2LZiaKqUqJcRF8WHPO851D42HYUqus2NCqWlnowv238oQNnYdH6xkJZUlQ4J3B4IUf814Z9uH7KHrUGWcs-U40jDGjETo2_-g2zinAeVZZqhcjl5yRNE9Co-Sc4L2tAyjdrHTHu20aKdFO7Hlzd8iTg1H8xBwtwdgNXjXxaELAzyN9zuxkHrL0XpLaYkRQ4VP8OXTXCvJxSL3ds-0zZNbw2mUS7hRB0-7ldzy5TvseAL4jUsWBvEb2BXOfA</recordid><startdate>20170520</startdate><enddate>20170520</enddate><creator>Shiga, Yuki</creator><creator>Yamaguchi, Haruko</creator><creator>Tokai, Akihiro</creator><general>Pesticide Science Society of Japan</general><general>Japan Science and Technology Agency</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7ST</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170520</creationdate><title>Estimating the probability of exceeding the maximum residue limit for Japanese tea using a crop residue model</title><author>Shiga, Yuki ; Yamaguchi, Haruko ; Tokai, Akihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-54f8da7b38c54670e4d9c228535016cfbecd91817a70588e1268afe9b07775733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agrochemicals</topic><topic>crop residue</topic><topic>Crop residues</topic><topic>Crops</topic><topic>dynamic plant uptake model</topic><topic>Estimation</topic><topic>Exports</topic><topic>Green tea</topic><topic>Half-life</topic><topic>Insecticides</topic><topic>Japanese tea export</topic><topic>Leaves</topic><topic>Mathematical models</topic><topic>maximum residue limit</topic><topic>Nations</topic><topic>Original</topic><topic>Parameter estimation</topic><topic>Pesticide residues</topic><topic>Pesticides</topic><topic>Probabilistic methods</topic><topic>probabilistic risk estimation</topic><topic>Probability distribution</topic><topic>Probability theory</topic><topic>Regression</topic><topic>Residues</topic><topic>Risk</topic><topic>Spraying</topic><topic>Tea</topic><topic>Tetraethylammonium</topic><topic>Thiamethoxam</topic><topic>Trade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiga, Yuki</creatorcontrib><creatorcontrib>Yamaguchi, Haruko</creatorcontrib><creatorcontrib>Tokai, Akihiro</creatorcontrib><creatorcontrib>Osaka University</creatorcontrib><creatorcontrib>Graduate School of Engineering</creatorcontrib><creatorcontrib>National Institute of Health and Science</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Pesticide Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiga, Yuki</au><au>Yamaguchi, Haruko</au><au>Tokai, Akihiro</au><aucorp>Osaka University</aucorp><aucorp>Graduate School of Engineering</aucorp><aucorp>National Institute of Health and Science</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the probability of exceeding the maximum residue limit for Japanese tea using a crop residue model</atitle><jtitle>Journal of Pesticide Science</jtitle><addtitle>J. Pestic. Sci.</addtitle><date>2017-05-20</date><risdate>2017</risdate><volume>42</volume><issue>2</issue><spage>32</spage><epage>38</epage><pages>32-38</pages><issn>1348-589X</issn><eissn>1349-0923</eissn><abstract>Maximum residue limits (MRLs) for pesticides in export countries from Japan often become a trade barrier for Japanese tea. The purpose of this study is to develop a probabilistic risk estimation method for pesticide residues in green tea. First, we developed a model to estimate the pesticide residue level in green tea. Second, we introduced a regression model for pesticide half-lives on plants, one of the most critical parameters in the model. Finally, we estimated the time-course change of the distribution of the residue level by setting the probability distribution to the half-lives on tea leaves. Applying the model to three pesticides, acetamiprid, dinotefuran, and thiamethoxam, we suggested that the pre-harvest interval of thiamethoxam should be increased by three weeks for export to Taiwan. For EU nations, the MRL excess probabilities of acetamiprid and dinotefuran were measured as 99.6% and 99.5%, respectively, even 28 days after spraying.</abstract><cop>Japan</cop><pub>Pesticide Science Society of Japan</pub><pmid>30363118</pmid><doi>10.1584/jpestics.D16-090</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1348-589X
ispartof Journal of Pesticide Science, 2017/05/20, Vol.42(2), pp.32-38
issn 1348-589X
1349-0923
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6140641
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; PubMed Central
subjects Agrochemicals
crop residue
Crop residues
Crops
dynamic plant uptake model
Estimation
Exports
Green tea
Half-life
Insecticides
Japanese tea export
Leaves
Mathematical models
maximum residue limit
Nations
Original
Parameter estimation
Pesticide residues
Pesticides
Probabilistic methods
probabilistic risk estimation
Probability distribution
Probability theory
Regression
Residues
Risk
Spraying
Tea
Tetraethylammonium
Thiamethoxam
Trade
title Estimating the probability of exceeding the maximum residue limit for Japanese tea using a crop residue model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20probability%20of%20exceeding%20the%20maximum%20residue%20limit%20for%20Japanese%20tea%20using%20a%20crop%20residue%20model&rft.jtitle=Journal%20of%20Pesticide%20Science&rft.au=Shiga,%20Yuki&rft.aucorp=Osaka%20University&rft.date=2017-05-20&rft.volume=42&rft.issue=2&rft.spage=32&rft.epage=38&rft.pages=32-38&rft.issn=1348-589X&rft.eissn=1349-0923&rft_id=info:doi/10.1584/jpestics.D16-090&rft_dat=%3Cproquest_pubme%3E2126911196%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1906173742&rft_id=info:pmid/30363118&rfr_iscdi=true