Estimating the probability of exceeding the maximum residue limit for Japanese tea using a crop residue model
Maximum residue limits (MRLs) for pesticides in export countries from Japan often become a trade barrier for Japanese tea. The purpose of this study is to develop a probabilistic risk estimation method for pesticide residues in green tea. First, we developed a model to estimate the pesticide residue...
Gespeichert in:
Veröffentlicht in: | Journal of Pesticide Science 2017/05/20, Vol.42(2), pp.32-38 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 2 |
container_start_page | 32 |
container_title | Journal of Pesticide Science |
container_volume | 42 |
creator | Shiga, Yuki Yamaguchi, Haruko Tokai, Akihiro |
description | Maximum residue limits (MRLs) for pesticides in export countries from Japan often become a trade barrier for Japanese tea. The purpose of this study is to develop a probabilistic risk estimation method for pesticide residues in green tea. First, we developed a model to estimate the pesticide residue level in green tea. Second, we introduced a regression model for pesticide half-lives on plants, one of the most critical parameters in the model. Finally, we estimated the time-course change of the distribution of the residue level by setting the probability distribution to the half-lives on tea leaves. Applying the model to three pesticides, acetamiprid, dinotefuran, and thiamethoxam, we suggested that the pre-harvest interval of thiamethoxam should be increased by three weeks for export to Taiwan. For EU nations, the MRL excess probabilities of acetamiprid and dinotefuran were measured as 99.6% and 99.5%, respectively, even 28 days after spraying. |
doi_str_mv | 10.1584/jpestics.D16-090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6140641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126911196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-54f8da7b38c54670e4d9c228535016cfbecd91817a70588e1268afe9b07775733</originalsourceid><addsrcrecordid>eNpdUU1v1DAQjRCIVqV3TsgSFy5b_JH444KESltAlbiAxM1ynMmuV0kc7KTq_nsm7EeBgz0jzZs38-YVxWtGr1ily_fbEfIUfL76xOSKGvqsOGeiNJhy8fxPrleVNj_Pisuct5RSpoQyRr4szgQVUjCmz4v-Bjl6N4VhTaYNkDHF2tWhC9OOxJbAowdojsXePYZ-7kmCHJoZSBf6MJE2JvLVjW6ADGQCR-a8NDjiUxxP2D420L0qXrSuy3B5iBfFj9ub79efV_ff7r5cf7xfeUn5tKrKVjdO1UL7qpSKQtkYz7muREWZ9G0NvjFMM-UUrbQGxqV2LZiaKqUqJcRF8WHPO851D42HYUqus2NCqWlnowv238oQNnYdH6xkJZUlQ4J3B4IUf814Z9uH7KHrUGWcs-U40jDGjETo2_-g2zinAeVZZqhcjl5yRNE9Co-Sc4L2tAyjdrHTHu20aKdFO7Hlzd8iTg1H8xBwtwdgNXjXxaELAzyN9zuxkHrL0XpLaYkRQ4VP8OXTXCvJxSL3ds-0zZNbw2mUS7hRB0-7ldzy5TvseAL4jUsWBvEb2BXOfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906173742</pqid></control><display><type>article</type><title>Estimating the probability of exceeding the maximum residue limit for Japanese tea using a crop residue model</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>PubMed Central</source><creator>Shiga, Yuki ; Yamaguchi, Haruko ; Tokai, Akihiro</creator><creatorcontrib>Shiga, Yuki ; Yamaguchi, Haruko ; Tokai, Akihiro ; Osaka University ; Graduate School of Engineering ; National Institute of Health and Science</creatorcontrib><description>Maximum residue limits (MRLs) for pesticides in export countries from Japan often become a trade barrier for Japanese tea. The purpose of this study is to develop a probabilistic risk estimation method for pesticide residues in green tea. First, we developed a model to estimate the pesticide residue level in green tea. Second, we introduced a regression model for pesticide half-lives on plants, one of the most critical parameters in the model. Finally, we estimated the time-course change of the distribution of the residue level by setting the probability distribution to the half-lives on tea leaves. Applying the model to three pesticides, acetamiprid, dinotefuran, and thiamethoxam, we suggested that the pre-harvest interval of thiamethoxam should be increased by three weeks for export to Taiwan. For EU nations, the MRL excess probabilities of acetamiprid and dinotefuran were measured as 99.6% and 99.5%, respectively, even 28 days after spraying.</description><identifier>ISSN: 1348-589X</identifier><identifier>EISSN: 1349-0923</identifier><identifier>DOI: 10.1584/jpestics.D16-090</identifier><identifier>PMID: 30363118</identifier><language>eng</language><publisher>Japan: Pesticide Science Society of Japan</publisher><subject>Agrochemicals ; crop residue ; Crop residues ; Crops ; dynamic plant uptake model ; Estimation ; Exports ; Green tea ; Half-life ; Insecticides ; Japanese tea export ; Leaves ; Mathematical models ; maximum residue limit ; Nations ; Original ; Parameter estimation ; Pesticide residues ; Pesticides ; Probabilistic methods ; probabilistic risk estimation ; Probability distribution ; Probability theory ; Regression ; Residues ; Risk ; Spraying ; Tea ; Tetraethylammonium ; Thiamethoxam ; Trade</subject><ispartof>Journal of Pesticide Science, 2017/05/20, Vol.42(2), pp.32-38</ispartof><rights>2017 Pesticide Science Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><rights>2017 Pesticide Science Society of Japan 2017 Pesticide Science Society of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-54f8da7b38c54670e4d9c228535016cfbecd91817a70588e1268afe9b07775733</citedby><cites>FETCH-LOGICAL-c602t-54f8da7b38c54670e4d9c228535016cfbecd91817a70588e1268afe9b07775733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140641/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140641/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1884,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30363118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiga, Yuki</creatorcontrib><creatorcontrib>Yamaguchi, Haruko</creatorcontrib><creatorcontrib>Tokai, Akihiro</creatorcontrib><creatorcontrib>Osaka University</creatorcontrib><creatorcontrib>Graduate School of Engineering</creatorcontrib><creatorcontrib>National Institute of Health and Science</creatorcontrib><title>Estimating the probability of exceeding the maximum residue limit for Japanese tea using a crop residue model</title><title>Journal of Pesticide Science</title><addtitle>J. Pestic. Sci.</addtitle><description>Maximum residue limits (MRLs) for pesticides in export countries from Japan often become a trade barrier for Japanese tea. The purpose of this study is to develop a probabilistic risk estimation method for pesticide residues in green tea. First, we developed a model to estimate the pesticide residue level in green tea. Second, we introduced a regression model for pesticide half-lives on plants, one of the most critical parameters in the model. Finally, we estimated the time-course change of the distribution of the residue level by setting the probability distribution to the half-lives on tea leaves. Applying the model to three pesticides, acetamiprid, dinotefuran, and thiamethoxam, we suggested that the pre-harvest interval of thiamethoxam should be increased by three weeks for export to Taiwan. For EU nations, the MRL excess probabilities of acetamiprid and dinotefuran were measured as 99.6% and 99.5%, respectively, even 28 days after spraying.</description><subject>Agrochemicals</subject><subject>crop residue</subject><subject>Crop residues</subject><subject>Crops</subject><subject>dynamic plant uptake model</subject><subject>Estimation</subject><subject>Exports</subject><subject>Green tea</subject><subject>Half-life</subject><subject>Insecticides</subject><subject>Japanese tea export</subject><subject>Leaves</subject><subject>Mathematical models</subject><subject>maximum residue limit</subject><subject>Nations</subject><subject>Original</subject><subject>Parameter estimation</subject><subject>Pesticide residues</subject><subject>Pesticides</subject><subject>Probabilistic methods</subject><subject>probabilistic risk estimation</subject><subject>Probability distribution</subject><subject>Probability theory</subject><subject>Regression</subject><subject>Residues</subject><subject>Risk</subject><subject>Spraying</subject><subject>Tea</subject><subject>Tetraethylammonium</subject><subject>Thiamethoxam</subject><subject>Trade</subject><issn>1348-589X</issn><issn>1349-0923</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdUU1v1DAQjRCIVqV3TsgSFy5b_JH444KESltAlbiAxM1ynMmuV0kc7KTq_nsm7EeBgz0jzZs38-YVxWtGr1ily_fbEfIUfL76xOSKGvqsOGeiNJhy8fxPrleVNj_Pisuct5RSpoQyRr4szgQVUjCmz4v-Bjl6N4VhTaYNkDHF2tWhC9OOxJbAowdojsXePYZ-7kmCHJoZSBf6MJE2JvLVjW6ADGQCR-a8NDjiUxxP2D420L0qXrSuy3B5iBfFj9ub79efV_ff7r5cf7xfeUn5tKrKVjdO1UL7qpSKQtkYz7muREWZ9G0NvjFMM-UUrbQGxqV2LZiaKqUqJcRF8WHPO851D42HYUqus2NCqWlnowv238oQNnYdH6xkJZUlQ4J3B4IUf814Z9uH7KHrUGWcs-U40jDGjETo2_-g2zinAeVZZqhcjl5yRNE9Co-Sc4L2tAyjdrHTHu20aKdFO7Hlzd8iTg1H8xBwtwdgNXjXxaELAzyN9zuxkHrL0XpLaYkRQ4VP8OXTXCvJxSL3ds-0zZNbw2mUS7hRB0-7ldzy5TvseAL4jUsWBvEb2BXOfA</recordid><startdate>20170520</startdate><enddate>20170520</enddate><creator>Shiga, Yuki</creator><creator>Yamaguchi, Haruko</creator><creator>Tokai, Akihiro</creator><general>Pesticide Science Society of Japan</general><general>Japan Science and Technology Agency</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7ST</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170520</creationdate><title>Estimating the probability of exceeding the maximum residue limit for Japanese tea using a crop residue model</title><author>Shiga, Yuki ; Yamaguchi, Haruko ; Tokai, Akihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-54f8da7b38c54670e4d9c228535016cfbecd91817a70588e1268afe9b07775733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agrochemicals</topic><topic>crop residue</topic><topic>Crop residues</topic><topic>Crops</topic><topic>dynamic plant uptake model</topic><topic>Estimation</topic><topic>Exports</topic><topic>Green tea</topic><topic>Half-life</topic><topic>Insecticides</topic><topic>Japanese tea export</topic><topic>Leaves</topic><topic>Mathematical models</topic><topic>maximum residue limit</topic><topic>Nations</topic><topic>Original</topic><topic>Parameter estimation</topic><topic>Pesticide residues</topic><topic>Pesticides</topic><topic>Probabilistic methods</topic><topic>probabilistic risk estimation</topic><topic>Probability distribution</topic><topic>Probability theory</topic><topic>Regression</topic><topic>Residues</topic><topic>Risk</topic><topic>Spraying</topic><topic>Tea</topic><topic>Tetraethylammonium</topic><topic>Thiamethoxam</topic><topic>Trade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiga, Yuki</creatorcontrib><creatorcontrib>Yamaguchi, Haruko</creatorcontrib><creatorcontrib>Tokai, Akihiro</creatorcontrib><creatorcontrib>Osaka University</creatorcontrib><creatorcontrib>Graduate School of Engineering</creatorcontrib><creatorcontrib>National Institute of Health and Science</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Pesticide Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiga, Yuki</au><au>Yamaguchi, Haruko</au><au>Tokai, Akihiro</au><aucorp>Osaka University</aucorp><aucorp>Graduate School of Engineering</aucorp><aucorp>National Institute of Health and Science</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the probability of exceeding the maximum residue limit for Japanese tea using a crop residue model</atitle><jtitle>Journal of Pesticide Science</jtitle><addtitle>J. Pestic. Sci.</addtitle><date>2017-05-20</date><risdate>2017</risdate><volume>42</volume><issue>2</issue><spage>32</spage><epage>38</epage><pages>32-38</pages><issn>1348-589X</issn><eissn>1349-0923</eissn><abstract>Maximum residue limits (MRLs) for pesticides in export countries from Japan often become a trade barrier for Japanese tea. The purpose of this study is to develop a probabilistic risk estimation method for pesticide residues in green tea. First, we developed a model to estimate the pesticide residue level in green tea. Second, we introduced a regression model for pesticide half-lives on plants, one of the most critical parameters in the model. Finally, we estimated the time-course change of the distribution of the residue level by setting the probability distribution to the half-lives on tea leaves. Applying the model to three pesticides, acetamiprid, dinotefuran, and thiamethoxam, we suggested that the pre-harvest interval of thiamethoxam should be increased by three weeks for export to Taiwan. For EU nations, the MRL excess probabilities of acetamiprid and dinotefuran were measured as 99.6% and 99.5%, respectively, even 28 days after spraying.</abstract><cop>Japan</cop><pub>Pesticide Science Society of Japan</pub><pmid>30363118</pmid><doi>10.1584/jpestics.D16-090</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1348-589X |
ispartof | Journal of Pesticide Science, 2017/05/20, Vol.42(2), pp.32-38 |
issn | 1348-589X 1349-0923 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6140641 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; PubMed Central |
subjects | Agrochemicals crop residue Crop residues Crops dynamic plant uptake model Estimation Exports Green tea Half-life Insecticides Japanese tea export Leaves Mathematical models maximum residue limit Nations Original Parameter estimation Pesticide residues Pesticides Probabilistic methods probabilistic risk estimation Probability distribution Probability theory Regression Residues Risk Spraying Tea Tetraethylammonium Thiamethoxam Trade |
title | Estimating the probability of exceeding the maximum residue limit for Japanese tea using a crop residue model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20probability%20of%20exceeding%20the%20maximum%20residue%20limit%20for%20Japanese%20tea%20using%20a%20crop%20residue%20model&rft.jtitle=Journal%20of%20Pesticide%20Science&rft.au=Shiga,%20Yuki&rft.aucorp=Osaka%20University&rft.date=2017-05-20&rft.volume=42&rft.issue=2&rft.spage=32&rft.epage=38&rft.pages=32-38&rft.issn=1348-589X&rft.eissn=1349-0923&rft_id=info:doi/10.1584/jpestics.D16-090&rft_dat=%3Cproquest_pubme%3E2126911196%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1906173742&rft_id=info:pmid/30363118&rfr_iscdi=true |