Endothelial barrier dysfunction induced by nanoparticle exposure through actin remodeling via caveolae/raft-regulated calcium signalling

The rapid development of modern nanotechnology has resulted in nanomaterial being use in nearly all applications of life, raising the potential risk of nanomaterial exposure alongside the need to design safe and effective materials. Previous work has demonstrated a specific effect of gold nanopartic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NanoImpact 2018-07, Vol.11, p.82-91
Hauptverfasser: Liu, Yizhong, Yoo, Eunsoo, Han, Chendong, Mahler, Gretchen J., Doiron, Amber L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue
container_start_page 82
container_title NanoImpact
container_volume 11
creator Liu, Yizhong
Yoo, Eunsoo
Han, Chendong
Mahler, Gretchen J.
Doiron, Amber L.
description The rapid development of modern nanotechnology has resulted in nanomaterial being use in nearly all applications of life, raising the potential risk of nanomaterial exposure alongside the need to design safe and effective materials. Previous work has demonstrated a specific effect of gold nanoparticles (GNPs) of approximately 20 nm on endothelial barrier function in vitro. To expand our understanding of this size-specific effect, titanium dioxide, silicon dioxide, and polystyrene nanoparticles (NPs) in this similar size range were studied. All tested nanoparticles were found to have minimal effects on cell viability, but exhibited a significant detrimental effect on endothelial barrier function. Nanoparticles in the size range of 20 to 30 nm were internalized by endothelial cells through caveolae/raft-mediated endocytosis, causing intracellular calcium elevation by approximately 30% at 2 h after administration, and triggering myosin light chain kinase (MLCK)-regulated actomyosin contraction. These effects culminated in an increase in endothelial monolayer permeability across all particle types within the 20–30 nm range. This nanoparticle exposure-induced endothelial barrier dysfunction may provide valuable information for designing safer nanomaterials or potential applications of this nanoparticle exposure-induced permeability effect in biomedicine. [Display omitted] •Nanoparticles in the 20 to 30 nm size range can cause endothelial barrier dysfunction without affecting cell proliferation.•Nanoparticles in the 20 to 30 nm size range are primarily internalized by caveolae/raft-regulated endocytosis.•Intracellular calcium level elevation induced by nanoparticle exposure triggers actin remodeling.
doi_str_mv 10.1016/j.impact.2018.02.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6139665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2452074817301805</els_id><sourcerecordid>2111146521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-584b3f553e7a5c685b49fa3c91080cf4b30f12f6e8c5edcb561747ecc1fe7ffe3</originalsourceid><addsrcrecordid>eNp9kc9u3CAQxq2qURMleYOo4tiLHbAN9l4qVVH6R4rUS3NGYzx4WWFwAa-6b5DHLqtN0_RSLiDN930zw68obhitGGXidleZeQGVqpqyvqJ1RWn3prioW16XtGv7t6_e58V1jDtKs6_pWMveFecNrZueiv6ieLp3o09btAYsGSAEg4GMh6hXp5Lxjhg3rgpHMhyIA-cXCMkoiwR_LT6uAUnaBr9OW5KnMY4EnP2Y09xE9gaIgj16C3gbQKcy4LRaSDlNgVVmnUk0kwN7lF8VZxpsxOvn-7J4_Hz_4-5r-fD9y7e7Tw-lakWTSt63Q6M5b7ADrkTPh3ajoVEbRnuqdC5SzWotsFccRzVwwbq2Q6WYxk5rbC6Lj6fcZR3mrECXAli5BDNDOEgPRv5bcWYrJ7-XgjUbIXgO-PAcEPzPFWOSs4kKrQWHfo2yZvm0gtcsS9uTVAUfY0D90oZReeQod_LEUR45SlrLzDHb3r8e8cX0h9rfHTB_1D4Tk1EZdBmTCZjDRm_-3-E30bK2bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111146521</pqid></control><display><type>article</type><title>Endothelial barrier dysfunction induced by nanoparticle exposure through actin remodeling via caveolae/raft-regulated calcium signalling</title><source>Alma/SFX Local Collection</source><creator>Liu, Yizhong ; Yoo, Eunsoo ; Han, Chendong ; Mahler, Gretchen J. ; Doiron, Amber L.</creator><creatorcontrib>Liu, Yizhong ; Yoo, Eunsoo ; Han, Chendong ; Mahler, Gretchen J. ; Doiron, Amber L.</creatorcontrib><description>The rapid development of modern nanotechnology has resulted in nanomaterial being use in nearly all applications of life, raising the potential risk of nanomaterial exposure alongside the need to design safe and effective materials. Previous work has demonstrated a specific effect of gold nanoparticles (GNPs) of approximately 20 nm on endothelial barrier function in vitro. To expand our understanding of this size-specific effect, titanium dioxide, silicon dioxide, and polystyrene nanoparticles (NPs) in this similar size range were studied. All tested nanoparticles were found to have minimal effects on cell viability, but exhibited a significant detrimental effect on endothelial barrier function. Nanoparticles in the size range of 20 to 30 nm were internalized by endothelial cells through caveolae/raft-mediated endocytosis, causing intracellular calcium elevation by approximately 30% at 2 h after administration, and triggering myosin light chain kinase (MLCK)-regulated actomyosin contraction. These effects culminated in an increase in endothelial monolayer permeability across all particle types within the 20–30 nm range. This nanoparticle exposure-induced endothelial barrier dysfunction may provide valuable information for designing safer nanomaterials or potential applications of this nanoparticle exposure-induced permeability effect in biomedicine. [Display omitted] •Nanoparticles in the 20 to 30 nm size range can cause endothelial barrier dysfunction without affecting cell proliferation.•Nanoparticles in the 20 to 30 nm size range are primarily internalized by caveolae/raft-regulated endocytosis.•Intracellular calcium level elevation induced by nanoparticle exposure triggers actin remodeling.</description><identifier>ISSN: 2452-0748</identifier><identifier>EISSN: 2452-0748</identifier><identifier>DOI: 10.1016/j.impact.2018.02.007</identifier><identifier>PMID: 30238068</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Gold ; Permeability ; Polystyrene ; Silicon dioxide ; Titanium dioxide</subject><ispartof>NanoImpact, 2018-07, Vol.11, p.82-91</ispartof><rights>2018 Elsevier B.V.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-584b3f553e7a5c685b49fa3c91080cf4b30f12f6e8c5edcb561747ecc1fe7ffe3</citedby><cites>FETCH-LOGICAL-c463t-584b3f553e7a5c685b49fa3c91080cf4b30f12f6e8c5edcb561747ecc1fe7ffe3</cites><orcidid>0000-0003-3335-5628 ; 0000-0002-6963-0989 ; 0000-0002-7286-8920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30238068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yizhong</creatorcontrib><creatorcontrib>Yoo, Eunsoo</creatorcontrib><creatorcontrib>Han, Chendong</creatorcontrib><creatorcontrib>Mahler, Gretchen J.</creatorcontrib><creatorcontrib>Doiron, Amber L.</creatorcontrib><title>Endothelial barrier dysfunction induced by nanoparticle exposure through actin remodeling via caveolae/raft-regulated calcium signalling</title><title>NanoImpact</title><addtitle>NanoImpact</addtitle><description>The rapid development of modern nanotechnology has resulted in nanomaterial being use in nearly all applications of life, raising the potential risk of nanomaterial exposure alongside the need to design safe and effective materials. Previous work has demonstrated a specific effect of gold nanoparticles (GNPs) of approximately 20 nm on endothelial barrier function in vitro. To expand our understanding of this size-specific effect, titanium dioxide, silicon dioxide, and polystyrene nanoparticles (NPs) in this similar size range were studied. All tested nanoparticles were found to have minimal effects on cell viability, but exhibited a significant detrimental effect on endothelial barrier function. Nanoparticles in the size range of 20 to 30 nm were internalized by endothelial cells through caveolae/raft-mediated endocytosis, causing intracellular calcium elevation by approximately 30% at 2 h after administration, and triggering myosin light chain kinase (MLCK)-regulated actomyosin contraction. These effects culminated in an increase in endothelial monolayer permeability across all particle types within the 20–30 nm range. This nanoparticle exposure-induced endothelial barrier dysfunction may provide valuable information for designing safer nanomaterials or potential applications of this nanoparticle exposure-induced permeability effect in biomedicine. [Display omitted] •Nanoparticles in the 20 to 30 nm size range can cause endothelial barrier dysfunction without affecting cell proliferation.•Nanoparticles in the 20 to 30 nm size range are primarily internalized by caveolae/raft-regulated endocytosis.•Intracellular calcium level elevation induced by nanoparticle exposure triggers actin remodeling.</description><subject>Gold</subject><subject>Permeability</subject><subject>Polystyrene</subject><subject>Silicon dioxide</subject><subject>Titanium dioxide</subject><issn>2452-0748</issn><issn>2452-0748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u3CAQxq2qURMleYOo4tiLHbAN9l4qVVH6R4rUS3NGYzx4WWFwAa-6b5DHLqtN0_RSLiDN930zw68obhitGGXidleZeQGVqpqyvqJ1RWn3prioW16XtGv7t6_e58V1jDtKs6_pWMveFecNrZueiv6ieLp3o09btAYsGSAEg4GMh6hXp5Lxjhg3rgpHMhyIA-cXCMkoiwR_LT6uAUnaBr9OW5KnMY4EnP2Y09xE9gaIgj16C3gbQKcy4LRaSDlNgVVmnUk0kwN7lF8VZxpsxOvn-7J4_Hz_4-5r-fD9y7e7Tw-lakWTSt63Q6M5b7ADrkTPh3ajoVEbRnuqdC5SzWotsFccRzVwwbq2Q6WYxk5rbC6Lj6fcZR3mrECXAli5BDNDOEgPRv5bcWYrJ7-XgjUbIXgO-PAcEPzPFWOSs4kKrQWHfo2yZvm0gtcsS9uTVAUfY0D90oZReeQod_LEUR45SlrLzDHb3r8e8cX0h9rfHTB_1D4Tk1EZdBmTCZjDRm_-3-E30bK2bg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Liu, Yizhong</creator><creator>Yoo, Eunsoo</creator><creator>Han, Chendong</creator><creator>Mahler, Gretchen J.</creator><creator>Doiron, Amber L.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3335-5628</orcidid><orcidid>https://orcid.org/0000-0002-6963-0989</orcidid><orcidid>https://orcid.org/0000-0002-7286-8920</orcidid></search><sort><creationdate>20180701</creationdate><title>Endothelial barrier dysfunction induced by nanoparticle exposure through actin remodeling via caveolae/raft-regulated calcium signalling</title><author>Liu, Yizhong ; Yoo, Eunsoo ; Han, Chendong ; Mahler, Gretchen J. ; Doiron, Amber L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-584b3f553e7a5c685b49fa3c91080cf4b30f12f6e8c5edcb561747ecc1fe7ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Gold</topic><topic>Permeability</topic><topic>Polystyrene</topic><topic>Silicon dioxide</topic><topic>Titanium dioxide</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yizhong</creatorcontrib><creatorcontrib>Yoo, Eunsoo</creatorcontrib><creatorcontrib>Han, Chendong</creatorcontrib><creatorcontrib>Mahler, Gretchen J.</creatorcontrib><creatorcontrib>Doiron, Amber L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NanoImpact</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yizhong</au><au>Yoo, Eunsoo</au><au>Han, Chendong</au><au>Mahler, Gretchen J.</au><au>Doiron, Amber L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endothelial barrier dysfunction induced by nanoparticle exposure through actin remodeling via caveolae/raft-regulated calcium signalling</atitle><jtitle>NanoImpact</jtitle><addtitle>NanoImpact</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>11</volume><spage>82</spage><epage>91</epage><pages>82-91</pages><issn>2452-0748</issn><eissn>2452-0748</eissn><abstract>The rapid development of modern nanotechnology has resulted in nanomaterial being use in nearly all applications of life, raising the potential risk of nanomaterial exposure alongside the need to design safe and effective materials. Previous work has demonstrated a specific effect of gold nanoparticles (GNPs) of approximately 20 nm on endothelial barrier function in vitro. To expand our understanding of this size-specific effect, titanium dioxide, silicon dioxide, and polystyrene nanoparticles (NPs) in this similar size range were studied. All tested nanoparticles were found to have minimal effects on cell viability, but exhibited a significant detrimental effect on endothelial barrier function. Nanoparticles in the size range of 20 to 30 nm were internalized by endothelial cells through caveolae/raft-mediated endocytosis, causing intracellular calcium elevation by approximately 30% at 2 h after administration, and triggering myosin light chain kinase (MLCK)-regulated actomyosin contraction. These effects culminated in an increase in endothelial monolayer permeability across all particle types within the 20–30 nm range. This nanoparticle exposure-induced endothelial barrier dysfunction may provide valuable information for designing safer nanomaterials or potential applications of this nanoparticle exposure-induced permeability effect in biomedicine. [Display omitted] •Nanoparticles in the 20 to 30 nm size range can cause endothelial barrier dysfunction without affecting cell proliferation.•Nanoparticles in the 20 to 30 nm size range are primarily internalized by caveolae/raft-regulated endocytosis.•Intracellular calcium level elevation induced by nanoparticle exposure triggers actin remodeling.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30238068</pmid><doi>10.1016/j.impact.2018.02.007</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3335-5628</orcidid><orcidid>https://orcid.org/0000-0002-6963-0989</orcidid><orcidid>https://orcid.org/0000-0002-7286-8920</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2452-0748
ispartof NanoImpact, 2018-07, Vol.11, p.82-91
issn 2452-0748
2452-0748
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6139665
source Alma/SFX Local Collection
subjects Gold
Permeability
Polystyrene
Silicon dioxide
Titanium dioxide
title Endothelial barrier dysfunction induced by nanoparticle exposure through actin remodeling via caveolae/raft-regulated calcium signalling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endothelial%20barrier%20dysfunction%20induced%20by%20nanoparticle%20exposure%20through%20actin%20remodeling%20via%20caveolae/raft-regulated%20calcium%20signalling&rft.jtitle=NanoImpact&rft.au=Liu,%20Yizhong&rft.date=2018-07-01&rft.volume=11&rft.spage=82&rft.epage=91&rft.pages=82-91&rft.issn=2452-0748&rft.eissn=2452-0748&rft_id=info:doi/10.1016/j.impact.2018.02.007&rft_dat=%3Cproquest_pubme%3E2111146521%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111146521&rft_id=info:pmid/30238068&rft_els_id=S2452074817301805&rfr_iscdi=true