Mechanosensitivity of wild‐type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia

Mutations of cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial ligand‐gated anion channel, are associated with the lethal genetic disease cystic fibrosis. The CFTR G551D mutation impairs ATP hydrolysis and thereby makes CFTR refractory to cAMP stimulation. Both wild‐type (WT)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2016-04, Vol.30 (4), p.1579-1589
Hauptverfasser: Xie, Changyan, Cao, Xu, Chen, Xibing, Wang, Dong, Zhang, Wei Kevin, Sun, Ying, Hu, Wenbao, Zhou, Zijing, Wang, Yan, Huang, Pingbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1589
container_issue 4
container_start_page 1579
container_title The FASEB journal
container_volume 30
creator Xie, Changyan
Cao, Xu
Chen, Xibing
Wang, Dong
Zhang, Wei Kevin
Sun, Ying
Hu, Wenbao
Zhou, Zijing
Wang, Yan
Huang, Pingbo
description Mutations of cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial ligand‐gated anion channel, are associated with the lethal genetic disease cystic fibrosis. The CFTR G551D mutation impairs ATP hydrolysis and thereby makes CFTR refractory to cAMP stimulation. Both wild‐type (WT) and G551D CFTR have been implicated in regulatory volume decrease (RVD), but the underlying mechanism remains incompletely understood. Here, we show that the channel activity of both WT and G551D CFTR is directly stimulated by mechanical perturbation induced by cell swelling at the single‐channel, cellular, and tissue levels. Hypotonicity activated CFTR single channels in cell‐attached membrane patches and WT‐CFTR‐mediated short‐circuit current (Isc) in Calu‐3 cells, and this was independent of Ca2+ and cAMP/PKA signaling. Genetic suppression and ablation but not G551D mutation of CFTR suppressed the hypotonicity‐ and stretch‐induced Isc in Calu‐3 cells and mouse duodena. Moreover, ablation but not G551D mutation of the CFTR gene inhibited the RVD of crypts isolated from mouse intestine; more importantly, CFTR‐specific blockers markedly suppressed RVD in both WT‐ and G551D CFTR mice, demonstrating for the first time that the channel activity of both WT and G551D CFTR is required for epithelial RVD. Our findings uncover a previously unrecognized mechanism underlying CFTR involvement in epithelial RVD and suggest that the mechanosensitivity of G551D CFTR might underlie the mild phenotypes resulting from this mutation.—Xie, C., Cao, X., Chen, X, Wang, D., Zhang, W. K., Sun, Y., Hu, W., Zhou, Z., Wang, Y., Huang, P. Mechanosensitivity of wild‐type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia. FASEB J. 30, 1579–1589 (2016). www.fasebj.org
doi_str_mv 10.1096/fj.15-283002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1777979039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4980-c5d3e5fd9aa3d237d3ddda2df9d62e65f4e977d93ea9a5077c3e252cfe632e473</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMoTju6cy1ZjmCN-ekklY2grT0KI4KO65BObk2nqaqUSaqldj6CT-DD-SRW0-OoG1fnwvk493IPQo8pOadEy-fN7pyKitWcEHYHLajgpJK1JHfRgtSaVVLy-gQ9yHlHCKGEyvvohElZc6n1Av14D25r-5ihz6GEfSgTjg3-Glr_89v3Mg2Abe_xhRD0NXZTLsHhJmxSzCHjkmyfO-g2swJ2sfejK7Z3gBNcj60tMeGz1frq49ODWVJs8x9nwvvYjh1gDy6BzYBDj3PohhYwDKFsoQ32IbrX2DbDoxs9RZ_Xb65Wb6vLDxfvVi8vK7fUNamc8BxE47W13DOuPPfeW-Yb7SUDKZolaKW85mC1FUQpx4EJ5hqQnMFS8VP04pg7jJsOvIP5WtuaIYXOpslEG8y_Th-25jrujaRcyVrPAWc3ASl-GSEX04XsoG3nz8QxG6qU0koTfkCfHVE3fzEnaG7XUGIOlZpmZ6gwx0pn_Mnfp93CvzucAXUE5tJg-m-YWX96xcg8kSWZ9RfB_LNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777979039</pqid></control><display><type>article</type><title>Mechanosensitivity of wild‐type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Xie, Changyan ; Cao, Xu ; Chen, Xibing ; Wang, Dong ; Zhang, Wei Kevin ; Sun, Ying ; Hu, Wenbao ; Zhou, Zijing ; Wang, Yan ; Huang, Pingbo</creator><creatorcontrib>Xie, Changyan ; Cao, Xu ; Chen, Xibing ; Wang, Dong ; Zhang, Wei Kevin ; Sun, Ying ; Hu, Wenbao ; Zhou, Zijing ; Wang, Yan ; Huang, Pingbo</creatorcontrib><description>Mutations of cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial ligand‐gated anion channel, are associated with the lethal genetic disease cystic fibrosis. The CFTR G551D mutation impairs ATP hydrolysis and thereby makes CFTR refractory to cAMP stimulation. Both wild‐type (WT) and G551D CFTR have been implicated in regulatory volume decrease (RVD), but the underlying mechanism remains incompletely understood. Here, we show that the channel activity of both WT and G551D CFTR is directly stimulated by mechanical perturbation induced by cell swelling at the single‐channel, cellular, and tissue levels. Hypotonicity activated CFTR single channels in cell‐attached membrane patches and WT‐CFTR‐mediated short‐circuit current (Isc) in Calu‐3 cells, and this was independent of Ca2+ and cAMP/PKA signaling. Genetic suppression and ablation but not G551D mutation of CFTR suppressed the hypotonicity‐ and stretch‐induced Isc in Calu‐3 cells and mouse duodena. Moreover, ablation but not G551D mutation of the CFTR gene inhibited the RVD of crypts isolated from mouse intestine; more importantly, CFTR‐specific blockers markedly suppressed RVD in both WT‐ and G551D CFTR mice, demonstrating for the first time that the channel activity of both WT and G551D CFTR is required for epithelial RVD. Our findings uncover a previously unrecognized mechanism underlying CFTR involvement in epithelial RVD and suggest that the mechanosensitivity of G551D CFTR might underlie the mild phenotypes resulting from this mutation.—Xie, C., Cao, X., Chen, X, Wang, D., Zhang, W. K., Sun, Y., Hu, W., Zhou, Z., Wang, Y., Huang, P. Mechanosensitivity of wild‐type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia. FASEB J. 30, 1579–1589 (2016). www.fasebj.org</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.15-283002</identifier><identifier>PMID: 26683699</identifier><language>eng</language><publisher>Bethesda, MD, USA: Federation of American Societies for Experimental Biology</publisher><subject>Animals ; Cell Line, Tumor ; Cell Size - drug effects ; CHO Cells ; Cricetinae ; Cricetulus ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Epithelial Cells - physiology ; Humans ; Hypotonic Solutions - pharmacology ; hypotonicity ; ion channel ; Ion Channel Gating - drug effects ; Ion Channel Gating - genetics ; Ion Channel Gating - physiology ; Mechanoreceptors - metabolism ; Mechanoreceptors - physiology ; mechanosensitive ; Mice, Knockout ; Mutation ; Osmotic Pressure ; osmotic swelling ; Patch-Clamp Techniques ; Research Communication ; RNA Interference ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Signal Transduction - physiology</subject><ispartof>The FASEB journal, 2016-04, Vol.30 (4), p.1579-1589</ispartof><rights>FASEB</rights><rights>FASEB.</rights><rights>FASEB 2016 FASEB</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4980-c5d3e5fd9aa3d237d3ddda2df9d62e65f4e977d93ea9a5077c3e252cfe632e473</citedby><cites>FETCH-LOGICAL-c4980-c5d3e5fd9aa3d237d3ddda2df9d62e65f4e977d93ea9a5077c3e252cfe632e473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.15-283002$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.15-283002$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26683699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Changyan</creatorcontrib><creatorcontrib>Cao, Xu</creatorcontrib><creatorcontrib>Chen, Xibing</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Zhang, Wei Kevin</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Hu, Wenbao</creatorcontrib><creatorcontrib>Zhou, Zijing</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Huang, Pingbo</creatorcontrib><title>Mechanosensitivity of wild‐type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>Mutations of cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial ligand‐gated anion channel, are associated with the lethal genetic disease cystic fibrosis. The CFTR G551D mutation impairs ATP hydrolysis and thereby makes CFTR refractory to cAMP stimulation. Both wild‐type (WT) and G551D CFTR have been implicated in regulatory volume decrease (RVD), but the underlying mechanism remains incompletely understood. Here, we show that the channel activity of both WT and G551D CFTR is directly stimulated by mechanical perturbation induced by cell swelling at the single‐channel, cellular, and tissue levels. Hypotonicity activated CFTR single channels in cell‐attached membrane patches and WT‐CFTR‐mediated short‐circuit current (Isc) in Calu‐3 cells, and this was independent of Ca2+ and cAMP/PKA signaling. Genetic suppression and ablation but not G551D mutation of CFTR suppressed the hypotonicity‐ and stretch‐induced Isc in Calu‐3 cells and mouse duodena. Moreover, ablation but not G551D mutation of the CFTR gene inhibited the RVD of crypts isolated from mouse intestine; more importantly, CFTR‐specific blockers markedly suppressed RVD in both WT‐ and G551D CFTR mice, demonstrating for the first time that the channel activity of both WT and G551D CFTR is required for epithelial RVD. Our findings uncover a previously unrecognized mechanism underlying CFTR involvement in epithelial RVD and suggest that the mechanosensitivity of G551D CFTR might underlie the mild phenotypes resulting from this mutation.—Xie, C., Cao, X., Chen, X, Wang, D., Zhang, W. K., Sun, Y., Hu, W., Zhou, Z., Wang, Y., Huang, P. Mechanosensitivity of wild‐type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia. FASEB J. 30, 1579–1589 (2016). www.fasebj.org</description><subject>Animals</subject><subject>Cell Line, Tumor</subject><subject>Cell Size - drug effects</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - physiology</subject><subject>Humans</subject><subject>Hypotonic Solutions - pharmacology</subject><subject>hypotonicity</subject><subject>ion channel</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - genetics</subject><subject>Ion Channel Gating - physiology</subject><subject>Mechanoreceptors - metabolism</subject><subject>Mechanoreceptors - physiology</subject><subject>mechanosensitive</subject><subject>Mice, Knockout</subject><subject>Mutation</subject><subject>Osmotic Pressure</subject><subject>osmotic swelling</subject><subject>Patch-Clamp Techniques</subject><subject>Research Communication</subject><subject>RNA Interference</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2KFDEUhYMoTju6cy1ZjmCN-ekklY2grT0KI4KO65BObk2nqaqUSaqldj6CT-DD-SRW0-OoG1fnwvk493IPQo8pOadEy-fN7pyKitWcEHYHLajgpJK1JHfRgtSaVVLy-gQ9yHlHCKGEyvvohElZc6n1Av14D25r-5ihz6GEfSgTjg3-Glr_89v3Mg2Abe_xhRD0NXZTLsHhJmxSzCHjkmyfO-g2swJ2sfejK7Z3gBNcj60tMeGz1frq49ODWVJs8x9nwvvYjh1gDy6BzYBDj3PohhYwDKFsoQ32IbrX2DbDoxs9RZ_Xb65Wb6vLDxfvVi8vK7fUNamc8BxE47W13DOuPPfeW-Yb7SUDKZolaKW85mC1FUQpx4EJ5hqQnMFS8VP04pg7jJsOvIP5WtuaIYXOpslEG8y_Th-25jrujaRcyVrPAWc3ASl-GSEX04XsoG3nz8QxG6qU0koTfkCfHVE3fzEnaG7XUGIOlZpmZ6gwx0pn_Mnfp93CvzucAXUE5tJg-m-YWX96xcg8kSWZ9RfB_LNM</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Xie, Changyan</creator><creator>Cao, Xu</creator><creator>Chen, Xibing</creator><creator>Wang, Dong</creator><creator>Zhang, Wei Kevin</creator><creator>Sun, Ying</creator><creator>Hu, Wenbao</creator><creator>Zhou, Zijing</creator><creator>Wang, Yan</creator><creator>Huang, Pingbo</creator><general>Federation of American Societies for Experimental Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201604</creationdate><title>Mechanosensitivity of wild‐type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia</title><author>Xie, Changyan ; Cao, Xu ; Chen, Xibing ; Wang, Dong ; Zhang, Wei Kevin ; Sun, Ying ; Hu, Wenbao ; Zhou, Zijing ; Wang, Yan ; Huang, Pingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4980-c5d3e5fd9aa3d237d3ddda2df9d62e65f4e977d93ea9a5077c3e252cfe632e473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Cell Line, Tumor</topic><topic>Cell Size - drug effects</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - physiology</topic><topic>Humans</topic><topic>Hypotonic Solutions - pharmacology</topic><topic>hypotonicity</topic><topic>ion channel</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - genetics</topic><topic>Ion Channel Gating - physiology</topic><topic>Mechanoreceptors - metabolism</topic><topic>Mechanoreceptors - physiology</topic><topic>mechanosensitive</topic><topic>Mice, Knockout</topic><topic>Mutation</topic><topic>Osmotic Pressure</topic><topic>osmotic swelling</topic><topic>Patch-Clamp Techniques</topic><topic>Research Communication</topic><topic>RNA Interference</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Changyan</creatorcontrib><creatorcontrib>Cao, Xu</creatorcontrib><creatorcontrib>Chen, Xibing</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Zhang, Wei Kevin</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Hu, Wenbao</creatorcontrib><creatorcontrib>Zhou, Zijing</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Huang, Pingbo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Changyan</au><au>Cao, Xu</au><au>Chen, Xibing</au><au>Wang, Dong</au><au>Zhang, Wei Kevin</au><au>Sun, Ying</au><au>Hu, Wenbao</au><au>Zhou, Zijing</au><au>Wang, Yan</au><au>Huang, Pingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanosensitivity of wild‐type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2016-04</date><risdate>2016</risdate><volume>30</volume><issue>4</issue><spage>1579</spage><epage>1589</epage><pages>1579-1589</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>Mutations of cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial ligand‐gated anion channel, are associated with the lethal genetic disease cystic fibrosis. The CFTR G551D mutation impairs ATP hydrolysis and thereby makes CFTR refractory to cAMP stimulation. Both wild‐type (WT) and G551D CFTR have been implicated in regulatory volume decrease (RVD), but the underlying mechanism remains incompletely understood. Here, we show that the channel activity of both WT and G551D CFTR is directly stimulated by mechanical perturbation induced by cell swelling at the single‐channel, cellular, and tissue levels. Hypotonicity activated CFTR single channels in cell‐attached membrane patches and WT‐CFTR‐mediated short‐circuit current (Isc) in Calu‐3 cells, and this was independent of Ca2+ and cAMP/PKA signaling. Genetic suppression and ablation but not G551D mutation of CFTR suppressed the hypotonicity‐ and stretch‐induced Isc in Calu‐3 cells and mouse duodena. Moreover, ablation but not G551D mutation of the CFTR gene inhibited the RVD of crypts isolated from mouse intestine; more importantly, CFTR‐specific blockers markedly suppressed RVD in both WT‐ and G551D CFTR mice, demonstrating for the first time that the channel activity of both WT and G551D CFTR is required for epithelial RVD. Our findings uncover a previously unrecognized mechanism underlying CFTR involvement in epithelial RVD and suggest that the mechanosensitivity of G551D CFTR might underlie the mild phenotypes resulting from this mutation.—Xie, C., Cao, X., Chen, X, Wang, D., Zhang, W. K., Sun, Y., Hu, W., Zhou, Z., Wang, Y., Huang, P. Mechanosensitivity of wild‐type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia. FASEB J. 30, 1579–1589 (2016). www.fasebj.org</abstract><cop>Bethesda, MD, USA</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>26683699</pmid><doi>10.1096/fj.15-283002</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2016-04, Vol.30 (4), p.1579-1589
issn 0892-6638
1530-6860
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137689
source MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection
subjects Animals
Cell Line, Tumor
Cell Size - drug effects
CHO Cells
Cricetinae
Cricetulus
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Epithelial Cells - physiology
Humans
Hypotonic Solutions - pharmacology
hypotonicity
ion channel
Ion Channel Gating - drug effects
Ion Channel Gating - genetics
Ion Channel Gating - physiology
Mechanoreceptors - metabolism
Mechanoreceptors - physiology
mechanosensitive
Mice, Knockout
Mutation
Osmotic Pressure
osmotic swelling
Patch-Clamp Techniques
Research Communication
RNA Interference
Signal Transduction - drug effects
Signal Transduction - genetics
Signal Transduction - physiology
title Mechanosensitivity of wild‐type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanosensitivity%20of%20wild%E2%80%90type%20and%20G551D%20cystic%20fibrosis%20transmembrane%20conductance%20regulator%20(CFTR)%20controls%20regulatory%20volume%20decrease%20in%20simple%20epithelia&rft.jtitle=The%20FASEB%20journal&rft.au=Xie,%20Changyan&rft.date=2016-04&rft.volume=30&rft.issue=4&rft.spage=1579&rft.epage=1589&rft.pages=1579-1589&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.15-283002&rft_dat=%3Cproquest_pubme%3E1777979039%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777979039&rft_id=info:pmid/26683699&rfr_iscdi=true