Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping

The Internet of Things (IoT) 1 , 2 employs a large number of spatially distributed wireless sensors to monitor physical environments, e.g., temperature, humidity, and air pressure, and has many applications, including environmental monitoring 3 , health care monitoring 4 , smart cities 5 , and preci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Light, science & applications science & applications, 2018-09, Vol.7 (1), p.62-6, Article 62
Hauptverfasser: Xu, Xiangyi, Chen, Weijian, Zhao, Guangming, Li, Yihang, Lu, Chenyang, Yang, Lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 1
container_start_page 62
container_title Light, science & applications
container_volume 7
creator Xu, Xiangyi
Chen, Weijian
Zhao, Guangming
Li, Yihang
Lu, Chenyang
Yang, Lan
description The Internet of Things (IoT) 1 , 2 employs a large number of spatially distributed wireless sensors to monitor physical environments, e.g., temperature, humidity, and air pressure, and has many applications, including environmental monitoring 3 , health care monitoring 4 , smart cities 5 , and precision agriculture. A wireless sensor can collect, analyze, and transmit measurements of its environment 1 , 2 . Currently, wireless sensors used in the IoT are predominately based on electronic devices that may suffer from electromagnetic interference in many circumstances. Being immune to the electromagnetic interference, optical sensors provide a significant advantage in harsh environments 6 . Furthermore, by introducing optical resonance to enhance light–matter interactions, optical sensors based on resonators exhibit small footprints, extreme sensitivity, and versatile functionalities 7 , 8 , which can significantly enhance the capability and flexibility of wireless sensors. Here we provide the first demonstration of a wireless photonic sensor node based on a whispering-gallery-mode (WGM) optical resonator, in which light propagates along the circular rim of such a structure like a sphere, a disk, or a toroid by continuous total internal reflection. The sensor node is controlled via a customized iOS app. Its performance was studied in two practical scenarios: (1) real-time measurement of the air temperature over 12 h and (2) aerial mapping of the temperature distribution using a sensor node mounted on an unmanned drone. Our work demonstrates the capability of WGM optical sensors in practical applications and may pave the way for the large-scale deployment of WGM sensors in the IoT.
doi_str_mv 10.1038/s41377-018-0063-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6133935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102374209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-745e40c4b48b628917d511780c14801d12c27cdf832a3d13e67fa632673d39063</originalsourceid><addsrcrecordid>eNp1UU1PAyEUJEZjm9of4MVs4hkFHgvsxcQ0fiWNXjQeCV3Ydpv9ElpN_73UrVoPkhDIMDPv8QahU0ouKAF1GTgFKTGhChMiAPMDNGSESyxTUId79wEah7AkcWWcEiWP0QAIk2nGxRA9vpbeVS6E5GNRhs75spnjuakq5ze4bq1LgmtC65Mi7tXC-dpUX1DkJaaxiYmSCNWm6yJ0go4KUwU33p0j9HJ78zy5x9Onu4fJ9RTnKYgVljx1nOR8xtVMMJVRaVNKpSI55YpQS1nOZG4LBcyApeCELIwAJiRYyOJvR-iq9-3Ws9rZ3DUrbyrd-bI2fqNbU-q_L0250PP2XQsKkEEaDc53Br59W7uw0st27ZvYs2aUMJCckSyyaM_KfRuCd8VPBUr0NgXdp6BjCnqbguZRc7bf2o_ie-aRwHpC6LbTdv639P-un4MYkk8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102374209</pqid></control><display><type>article</type><title>Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping</title><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Xu, Xiangyi ; Chen, Weijian ; Zhao, Guangming ; Li, Yihang ; Lu, Chenyang ; Yang, Lan</creator><creatorcontrib>Xu, Xiangyi ; Chen, Weijian ; Zhao, Guangming ; Li, Yihang ; Lu, Chenyang ; Yang, Lan</creatorcontrib><description>The Internet of Things (IoT) 1 , 2 employs a large number of spatially distributed wireless sensors to monitor physical environments, e.g., temperature, humidity, and air pressure, and has many applications, including environmental monitoring 3 , health care monitoring 4 , smart cities 5 , and precision agriculture. A wireless sensor can collect, analyze, and transmit measurements of its environment 1 , 2 . Currently, wireless sensors used in the IoT are predominately based on electronic devices that may suffer from electromagnetic interference in many circumstances. Being immune to the electromagnetic interference, optical sensors provide a significant advantage in harsh environments 6 . Furthermore, by introducing optical resonance to enhance light–matter interactions, optical sensors based on resonators exhibit small footprints, extreme sensitivity, and versatile functionalities 7 , 8 , which can significantly enhance the capability and flexibility of wireless sensors. Here we provide the first demonstration of a wireless photonic sensor node based on a whispering-gallery-mode (WGM) optical resonator, in which light propagates along the circular rim of such a structure like a sphere, a disk, or a toroid by continuous total internal reflection. The sensor node is controlled via a customized iOS app. Its performance was studied in two practical scenarios: (1) real-time measurement of the air temperature over 12 h and (2) aerial mapping of the temperature distribution using a sensor node mounted on an unmanned drone. Our work demonstrates the capability of WGM optical sensors in practical applications and may pave the way for the large-scale deployment of WGM sensors in the IoT.</description><identifier>ISSN: 2047-7538</identifier><identifier>ISSN: 2095-5545</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/s41377-018-0063-4</identifier><identifier>PMID: 30275946</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075 ; 639/624/1107 ; 639/624/1111 ; Air temperature ; Applied and Technical Physics ; Atomic ; Classical and Continuum Physics ; Electronic equipment ; Internet of Things ; Lasers ; Letter ; Mapping ; Molecular ; Optical and Plasma Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Sensors ; Temperature effects</subject><ispartof>Light, science &amp; applications, 2018-09, Vol.7 (1), p.62-6, Article 62</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-745e40c4b48b628917d511780c14801d12c27cdf832a3d13e67fa632673d39063</citedby><cites>FETCH-LOGICAL-c536t-745e40c4b48b628917d511780c14801d12c27cdf832a3d13e67fa632673d39063</cites><orcidid>0000-0002-9052-0450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133935/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133935/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30275946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiangyi</creatorcontrib><creatorcontrib>Chen, Weijian</creatorcontrib><creatorcontrib>Zhao, Guangming</creatorcontrib><creatorcontrib>Li, Yihang</creatorcontrib><creatorcontrib>Lu, Chenyang</creatorcontrib><creatorcontrib>Yang, Lan</creatorcontrib><title>Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping</title><title>Light, science &amp; applications</title><addtitle>Light Sci Appl</addtitle><addtitle>Light Sci Appl</addtitle><description>The Internet of Things (IoT) 1 , 2 employs a large number of spatially distributed wireless sensors to monitor physical environments, e.g., temperature, humidity, and air pressure, and has many applications, including environmental monitoring 3 , health care monitoring 4 , smart cities 5 , and precision agriculture. A wireless sensor can collect, analyze, and transmit measurements of its environment 1 , 2 . Currently, wireless sensors used in the IoT are predominately based on electronic devices that may suffer from electromagnetic interference in many circumstances. Being immune to the electromagnetic interference, optical sensors provide a significant advantage in harsh environments 6 . Furthermore, by introducing optical resonance to enhance light–matter interactions, optical sensors based on resonators exhibit small footprints, extreme sensitivity, and versatile functionalities 7 , 8 , which can significantly enhance the capability and flexibility of wireless sensors. Here we provide the first demonstration of a wireless photonic sensor node based on a whispering-gallery-mode (WGM) optical resonator, in which light propagates along the circular rim of such a structure like a sphere, a disk, or a toroid by continuous total internal reflection. The sensor node is controlled via a customized iOS app. Its performance was studied in two practical scenarios: (1) real-time measurement of the air temperature over 12 h and (2) aerial mapping of the temperature distribution using a sensor node mounted on an unmanned drone. Our work demonstrates the capability of WGM optical sensors in practical applications and may pave the way for the large-scale deployment of WGM sensors in the IoT.</description><subject>639/624/1075</subject><subject>639/624/1107</subject><subject>639/624/1111</subject><subject>Air temperature</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Electronic equipment</subject><subject>Internet of Things</subject><subject>Lasers</subject><subject>Letter</subject><subject>Mapping</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sensors</subject><subject>Temperature effects</subject><issn>2047-7538</issn><issn>2095-5545</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UU1PAyEUJEZjm9of4MVs4hkFHgvsxcQ0fiWNXjQeCV3Ydpv9ElpN_73UrVoPkhDIMDPv8QahU0ouKAF1GTgFKTGhChMiAPMDNGSESyxTUId79wEah7AkcWWcEiWP0QAIk2nGxRA9vpbeVS6E5GNRhs75spnjuakq5ze4bq1LgmtC65Mi7tXC-dpUX1DkJaaxiYmSCNWm6yJ0go4KUwU33p0j9HJ78zy5x9Onu4fJ9RTnKYgVljx1nOR8xtVMMJVRaVNKpSI55YpQS1nOZG4LBcyApeCELIwAJiRYyOJvR-iq9-3Ws9rZ3DUrbyrd-bI2fqNbU-q_L0250PP2XQsKkEEaDc53Br59W7uw0st27ZvYs2aUMJCckSyyaM_KfRuCd8VPBUr0NgXdp6BjCnqbguZRc7bf2o_ie-aRwHpC6LbTdv639P-un4MYkk8</recordid><startdate>20180912</startdate><enddate>20180912</enddate><creator>Xu, Xiangyi</creator><creator>Chen, Weijian</creator><creator>Zhao, Guangming</creator><creator>Li, Yihang</creator><creator>Lu, Chenyang</creator><creator>Yang, Lan</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9052-0450</orcidid></search><sort><creationdate>20180912</creationdate><title>Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping</title><author>Xu, Xiangyi ; Chen, Weijian ; Zhao, Guangming ; Li, Yihang ; Lu, Chenyang ; Yang, Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-745e40c4b48b628917d511780c14801d12c27cdf832a3d13e67fa632673d39063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624/1075</topic><topic>639/624/1107</topic><topic>639/624/1111</topic><topic>Air temperature</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Electronic equipment</topic><topic>Internet of Things</topic><topic>Lasers</topic><topic>Letter</topic><topic>Mapping</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sensors</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiangyi</creatorcontrib><creatorcontrib>Chen, Weijian</creatorcontrib><creatorcontrib>Zhao, Guangming</creatorcontrib><creatorcontrib>Li, Yihang</creatorcontrib><creatorcontrib>Lu, Chenyang</creatorcontrib><creatorcontrib>Yang, Lan</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Light, science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiangyi</au><au>Chen, Weijian</au><au>Zhao, Guangming</au><au>Li, Yihang</au><au>Lu, Chenyang</au><au>Yang, Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping</atitle><jtitle>Light, science &amp; applications</jtitle><stitle>Light Sci Appl</stitle><addtitle>Light Sci Appl</addtitle><date>2018-09-12</date><risdate>2018</risdate><volume>7</volume><issue>1</issue><spage>62</spage><epage>6</epage><pages>62-6</pages><artnum>62</artnum><issn>2047-7538</issn><issn>2095-5545</issn><eissn>2047-7538</eissn><abstract>The Internet of Things (IoT) 1 , 2 employs a large number of spatially distributed wireless sensors to monitor physical environments, e.g., temperature, humidity, and air pressure, and has many applications, including environmental monitoring 3 , health care monitoring 4 , smart cities 5 , and precision agriculture. A wireless sensor can collect, analyze, and transmit measurements of its environment 1 , 2 . Currently, wireless sensors used in the IoT are predominately based on electronic devices that may suffer from electromagnetic interference in many circumstances. Being immune to the electromagnetic interference, optical sensors provide a significant advantage in harsh environments 6 . Furthermore, by introducing optical resonance to enhance light–matter interactions, optical sensors based on resonators exhibit small footprints, extreme sensitivity, and versatile functionalities 7 , 8 , which can significantly enhance the capability and flexibility of wireless sensors. Here we provide the first demonstration of a wireless photonic sensor node based on a whispering-gallery-mode (WGM) optical resonator, in which light propagates along the circular rim of such a structure like a sphere, a disk, or a toroid by continuous total internal reflection. The sensor node is controlled via a customized iOS app. Its performance was studied in two practical scenarios: (1) real-time measurement of the air temperature over 12 h and (2) aerial mapping of the temperature distribution using a sensor node mounted on an unmanned drone. Our work demonstrates the capability of WGM optical sensors in practical applications and may pave the way for the large-scale deployment of WGM sensors in the IoT.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30275946</pmid><doi>10.1038/s41377-018-0063-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9052-0450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-7538
ispartof Light, science & applications, 2018-09, Vol.7 (1), p.62-6, Article 62
issn 2047-7538
2095-5545
2047-7538
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6133935
source DOAJ Directory of Open Access Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals
subjects 639/624/1075
639/624/1107
639/624/1111
Air temperature
Applied and Technical Physics
Atomic
Classical and Continuum Physics
Electronic equipment
Internet of Things
Lasers
Letter
Mapping
Molecular
Optical and Plasma Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Sensors
Temperature effects
title Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20whispering-gallery-mode%20sensor%20for%20thermal%20sensing%20and%20aerial%20mapping&rft.jtitle=Light,%20science%20&%20applications&rft.au=Xu,%20Xiangyi&rft.date=2018-09-12&rft.volume=7&rft.issue=1&rft.spage=62&rft.epage=6&rft.pages=62-6&rft.artnum=62&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/s41377-018-0063-4&rft_dat=%3Cproquest_pubme%3E2102374209%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102374209&rft_id=info:pmid/30275946&rfr_iscdi=true