Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping
The Internet of Things (IoT) 1 , 2 employs a large number of spatially distributed wireless sensors to monitor physical environments, e.g., temperature, humidity, and air pressure, and has many applications, including environmental monitoring 3 , health care monitoring 4 , smart cities 5 , and preci...
Gespeichert in:
Veröffentlicht in: | Light, science & applications science & applications, 2018-09, Vol.7 (1), p.62-6, Article 62 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 1 |
container_start_page | 62 |
container_title | Light, science & applications |
container_volume | 7 |
creator | Xu, Xiangyi Chen, Weijian Zhao, Guangming Li, Yihang Lu, Chenyang Yang, Lan |
description | The Internet of Things (IoT)
1
,
2
employs a large number of spatially distributed wireless sensors to monitor physical environments, e.g., temperature, humidity, and air pressure, and has many applications, including environmental monitoring
3
, health care monitoring
4
, smart cities
5
, and precision agriculture. A wireless sensor can collect, analyze, and transmit measurements of its environment
1
,
2
. Currently, wireless sensors used in the IoT are predominately based on electronic devices that may suffer from electromagnetic interference in many circumstances. Being immune to the electromagnetic interference, optical sensors provide a significant advantage in harsh environments
6
. Furthermore, by introducing optical resonance to enhance light–matter interactions, optical sensors based on resonators exhibit small footprints, extreme sensitivity, and versatile functionalities
7
,
8
, which can significantly enhance the capability and flexibility of wireless sensors. Here we provide the first demonstration of a wireless photonic sensor node based on a whispering-gallery-mode (WGM) optical resonator, in which light propagates along the circular rim of such a structure like a sphere, a disk, or a toroid by continuous total internal reflection. The sensor node is controlled via a customized iOS app. Its performance was studied in two practical scenarios: (1) real-time measurement of the air temperature over 12 h and (2) aerial mapping of the temperature distribution using a sensor node mounted on an unmanned drone. Our work demonstrates the capability of WGM optical sensors in practical applications and may pave the way for the large-scale deployment of WGM sensors in the IoT. |
doi_str_mv | 10.1038/s41377-018-0063-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6133935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102374209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-745e40c4b48b628917d511780c14801d12c27cdf832a3d13e67fa632673d39063</originalsourceid><addsrcrecordid>eNp1UU1PAyEUJEZjm9of4MVs4hkFHgvsxcQ0fiWNXjQeCV3Ydpv9ElpN_73UrVoPkhDIMDPv8QahU0ouKAF1GTgFKTGhChMiAPMDNGSESyxTUId79wEah7AkcWWcEiWP0QAIk2nGxRA9vpbeVS6E5GNRhs75spnjuakq5ze4bq1LgmtC65Mi7tXC-dpUX1DkJaaxiYmSCNWm6yJ0go4KUwU33p0j9HJ78zy5x9Onu4fJ9RTnKYgVljx1nOR8xtVMMJVRaVNKpSI55YpQS1nOZG4LBcyApeCELIwAJiRYyOJvR-iq9-3Ws9rZ3DUrbyrd-bI2fqNbU-q_L0250PP2XQsKkEEaDc53Br59W7uw0st27ZvYs2aUMJCckSyyaM_KfRuCd8VPBUr0NgXdp6BjCnqbguZRc7bf2o_ie-aRwHpC6LbTdv639P-un4MYkk8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102374209</pqid></control><display><type>article</type><title>Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping</title><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Xu, Xiangyi ; Chen, Weijian ; Zhao, Guangming ; Li, Yihang ; Lu, Chenyang ; Yang, Lan</creator><creatorcontrib>Xu, Xiangyi ; Chen, Weijian ; Zhao, Guangming ; Li, Yihang ; Lu, Chenyang ; Yang, Lan</creatorcontrib><description>The Internet of Things (IoT)
1
,
2
employs a large number of spatially distributed wireless sensors to monitor physical environments, e.g., temperature, humidity, and air pressure, and has many applications, including environmental monitoring
3
, health care monitoring
4
, smart cities
5
, and precision agriculture. A wireless sensor can collect, analyze, and transmit measurements of its environment
1
,
2
. Currently, wireless sensors used in the IoT are predominately based on electronic devices that may suffer from electromagnetic interference in many circumstances. Being immune to the electromagnetic interference, optical sensors provide a significant advantage in harsh environments
6
. Furthermore, by introducing optical resonance to enhance light–matter interactions, optical sensors based on resonators exhibit small footprints, extreme sensitivity, and versatile functionalities
7
,
8
, which can significantly enhance the capability and flexibility of wireless sensors. Here we provide the first demonstration of a wireless photonic sensor node based on a whispering-gallery-mode (WGM) optical resonator, in which light propagates along the circular rim of such a structure like a sphere, a disk, or a toroid by continuous total internal reflection. The sensor node is controlled via a customized iOS app. Its performance was studied in two practical scenarios: (1) real-time measurement of the air temperature over 12 h and (2) aerial mapping of the temperature distribution using a sensor node mounted on an unmanned drone. Our work demonstrates the capability of WGM optical sensors in practical applications and may pave the way for the large-scale deployment of WGM sensors in the IoT.</description><identifier>ISSN: 2047-7538</identifier><identifier>ISSN: 2095-5545</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/s41377-018-0063-4</identifier><identifier>PMID: 30275946</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075 ; 639/624/1107 ; 639/624/1111 ; Air temperature ; Applied and Technical Physics ; Atomic ; Classical and Continuum Physics ; Electronic equipment ; Internet of Things ; Lasers ; Letter ; Mapping ; Molecular ; Optical and Plasma Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Sensors ; Temperature effects</subject><ispartof>Light, science & applications, 2018-09, Vol.7 (1), p.62-6, Article 62</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-745e40c4b48b628917d511780c14801d12c27cdf832a3d13e67fa632673d39063</citedby><cites>FETCH-LOGICAL-c536t-745e40c4b48b628917d511780c14801d12c27cdf832a3d13e67fa632673d39063</cites><orcidid>0000-0002-9052-0450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133935/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133935/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30275946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiangyi</creatorcontrib><creatorcontrib>Chen, Weijian</creatorcontrib><creatorcontrib>Zhao, Guangming</creatorcontrib><creatorcontrib>Li, Yihang</creatorcontrib><creatorcontrib>Lu, Chenyang</creatorcontrib><creatorcontrib>Yang, Lan</creatorcontrib><title>Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping</title><title>Light, science & applications</title><addtitle>Light Sci Appl</addtitle><addtitle>Light Sci Appl</addtitle><description>The Internet of Things (IoT)
1
,
2
employs a large number of spatially distributed wireless sensors to monitor physical environments, e.g., temperature, humidity, and air pressure, and has many applications, including environmental monitoring
3
, health care monitoring
4
, smart cities
5
, and precision agriculture. A wireless sensor can collect, analyze, and transmit measurements of its environment
1
,
2
. Currently, wireless sensors used in the IoT are predominately based on electronic devices that may suffer from electromagnetic interference in many circumstances. Being immune to the electromagnetic interference, optical sensors provide a significant advantage in harsh environments
6
. Furthermore, by introducing optical resonance to enhance light–matter interactions, optical sensors based on resonators exhibit small footprints, extreme sensitivity, and versatile functionalities
7
,
8
, which can significantly enhance the capability and flexibility of wireless sensors. Here we provide the first demonstration of a wireless photonic sensor node based on a whispering-gallery-mode (WGM) optical resonator, in which light propagates along the circular rim of such a structure like a sphere, a disk, or a toroid by continuous total internal reflection. The sensor node is controlled via a customized iOS app. Its performance was studied in two practical scenarios: (1) real-time measurement of the air temperature over 12 h and (2) aerial mapping of the temperature distribution using a sensor node mounted on an unmanned drone. Our work demonstrates the capability of WGM optical sensors in practical applications and may pave the way for the large-scale deployment of WGM sensors in the IoT.</description><subject>639/624/1075</subject><subject>639/624/1107</subject><subject>639/624/1111</subject><subject>Air temperature</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Electronic equipment</subject><subject>Internet of Things</subject><subject>Lasers</subject><subject>Letter</subject><subject>Mapping</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sensors</subject><subject>Temperature effects</subject><issn>2047-7538</issn><issn>2095-5545</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UU1PAyEUJEZjm9of4MVs4hkFHgvsxcQ0fiWNXjQeCV3Ydpv9ElpN_73UrVoPkhDIMDPv8QahU0ouKAF1GTgFKTGhChMiAPMDNGSESyxTUId79wEah7AkcWWcEiWP0QAIk2nGxRA9vpbeVS6E5GNRhs75spnjuakq5ze4bq1LgmtC65Mi7tXC-dpUX1DkJaaxiYmSCNWm6yJ0go4KUwU33p0j9HJ78zy5x9Onu4fJ9RTnKYgVljx1nOR8xtVMMJVRaVNKpSI55YpQS1nOZG4LBcyApeCELIwAJiRYyOJvR-iq9-3Ws9rZ3DUrbyrd-bI2fqNbU-q_L0250PP2XQsKkEEaDc53Br59W7uw0st27ZvYs2aUMJCckSyyaM_KfRuCd8VPBUr0NgXdp6BjCnqbguZRc7bf2o_ie-aRwHpC6LbTdv639P-un4MYkk8</recordid><startdate>20180912</startdate><enddate>20180912</enddate><creator>Xu, Xiangyi</creator><creator>Chen, Weijian</creator><creator>Zhao, Guangming</creator><creator>Li, Yihang</creator><creator>Lu, Chenyang</creator><creator>Yang, Lan</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9052-0450</orcidid></search><sort><creationdate>20180912</creationdate><title>Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping</title><author>Xu, Xiangyi ; Chen, Weijian ; Zhao, Guangming ; Li, Yihang ; Lu, Chenyang ; Yang, Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-745e40c4b48b628917d511780c14801d12c27cdf832a3d13e67fa632673d39063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624/1075</topic><topic>639/624/1107</topic><topic>639/624/1111</topic><topic>Air temperature</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Electronic equipment</topic><topic>Internet of Things</topic><topic>Lasers</topic><topic>Letter</topic><topic>Mapping</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sensors</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiangyi</creatorcontrib><creatorcontrib>Chen, Weijian</creatorcontrib><creatorcontrib>Zhao, Guangming</creatorcontrib><creatorcontrib>Li, Yihang</creatorcontrib><creatorcontrib>Lu, Chenyang</creatorcontrib><creatorcontrib>Yang, Lan</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Light, science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiangyi</au><au>Chen, Weijian</au><au>Zhao, Guangming</au><au>Li, Yihang</au><au>Lu, Chenyang</au><au>Yang, Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping</atitle><jtitle>Light, science & applications</jtitle><stitle>Light Sci Appl</stitle><addtitle>Light Sci Appl</addtitle><date>2018-09-12</date><risdate>2018</risdate><volume>7</volume><issue>1</issue><spage>62</spage><epage>6</epage><pages>62-6</pages><artnum>62</artnum><issn>2047-7538</issn><issn>2095-5545</issn><eissn>2047-7538</eissn><abstract>The Internet of Things (IoT)
1
,
2
employs a large number of spatially distributed wireless sensors to monitor physical environments, e.g., temperature, humidity, and air pressure, and has many applications, including environmental monitoring
3
, health care monitoring
4
, smart cities
5
, and precision agriculture. A wireless sensor can collect, analyze, and transmit measurements of its environment
1
,
2
. Currently, wireless sensors used in the IoT are predominately based on electronic devices that may suffer from electromagnetic interference in many circumstances. Being immune to the electromagnetic interference, optical sensors provide a significant advantage in harsh environments
6
. Furthermore, by introducing optical resonance to enhance light–matter interactions, optical sensors based on resonators exhibit small footprints, extreme sensitivity, and versatile functionalities
7
,
8
, which can significantly enhance the capability and flexibility of wireless sensors. Here we provide the first demonstration of a wireless photonic sensor node based on a whispering-gallery-mode (WGM) optical resonator, in which light propagates along the circular rim of such a structure like a sphere, a disk, or a toroid by continuous total internal reflection. The sensor node is controlled via a customized iOS app. Its performance was studied in two practical scenarios: (1) real-time measurement of the air temperature over 12 h and (2) aerial mapping of the temperature distribution using a sensor node mounted on an unmanned drone. Our work demonstrates the capability of WGM optical sensors in practical applications and may pave the way for the large-scale deployment of WGM sensors in the IoT.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30275946</pmid><doi>10.1038/s41377-018-0063-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9052-0450</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-7538 |
ispartof | Light, science & applications, 2018-09, Vol.7 (1), p.62-6, Article 62 |
issn | 2047-7538 2095-5545 2047-7538 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6133935 |
source | DOAJ Directory of Open Access Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals |
subjects | 639/624/1075 639/624/1107 639/624/1111 Air temperature Applied and Technical Physics Atomic Classical and Continuum Physics Electronic equipment Internet of Things Lasers Letter Mapping Molecular Optical and Plasma Physics Optical Devices Optics Photonics Physics Physics and Astronomy Sensors Temperature effects |
title | Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20whispering-gallery-mode%20sensor%20for%20thermal%20sensing%20and%20aerial%20mapping&rft.jtitle=Light,%20science%20&%20applications&rft.au=Xu,%20Xiangyi&rft.date=2018-09-12&rft.volume=7&rft.issue=1&rft.spage=62&rft.epage=6&rft.pages=62-6&rft.artnum=62&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/s41377-018-0063-4&rft_dat=%3Cproquest_pubme%3E2102374209%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102374209&rft_id=info:pmid/30275946&rfr_iscdi=true |