A sparse representation and dictionary learning based algorithm for image restoration in the presence of Rician noise
Rician noise removal for Magnetic Resonance Imaging (MRI) is very important because the MRI has been widely used in various clinical applications and the associated Rician noise deteriorates the image quality and causes errors in interpreting the images. Great efforts have recently been devoted to d...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2018-01, Vol.286, p.130-140 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140 |
---|---|
container_issue | |
container_start_page | 130 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 286 |
creator | Chen, Wensheng You, Jie Chen, Bo Pan, Binbin Li, Lihong Pomeroy, Marc Liang, Zhengrong |
description | Rician noise removal for Magnetic Resonance Imaging (MRI) is very important because the MRI has been widely used in various clinical applications and the associated Rician noise deteriorates the image quality and causes errors in interpreting the images. Great efforts have recently been devoted to develop the corresponding noise-removal algorithms, particularly the development based on the newly-established Total Variation (TV) theorem. However, all the TV-based algorithms depend mainly on the gradient information and have been shown to produce the so called “blocky” artifact, which also deteriorates the image quality and causes image interpretation errors. In order to avoid producing the artifact, this paper presents a new de-noising model based on sparse representation and dictionary learning. The Split Bregman Iteration strategy is employed to implement the model. Furthermore, an appropriate dictionary is designed by the use of the Kernel Singular Value Decomposition method, resulting in a new Rician noise removal algorithm. Compared with other de-noising algorithms, the presented new algorithm can achieve superior performance, in terms of quantitative measures of the Structural Similarity Index and Peak Signal to Noise Ratio, by a series of experiments using different images in the presence of Rician noise. |
doi_str_mv | 10.1016/j.neucom.2018.01.066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6133329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231218300997</els_id><sourcerecordid>2105039949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-80df2d57661b74a96325e1a80a48c0073ebc63be24b2de48420569b8f39f26b23</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpaDZJ_0EpOvZidyTZsnwphNA2hUChJGchS-NdLba0lexA_n1tnKbtpScNaN6befMR8o5ByYDJj8cy4GzjWHJgqgRWgpSvyI6phheKK_ma7KDldcEF4-fkIucjAGsYb9-QcwGcVUu5I_M1zSeTMtKEp4QZw2QmHwM1wVHn7Vqb9EQHNCn4sKedyeioGfYx-ekw0j4m6kezXw3yFNOm9oFOB6Sbo0Uae_rDW28CDdFnvCJnvRkyvn1-L8nDl8_3N7fF3fev326u7wpbA0yFAtdzVzdSsq6pTCsFr5EZBaZSFqAR2FkpOuRVxx1WquJQy7ZTvWh7LjsuLsmnzfc0dyM6u6RLZtCntGycnnQ0Xv_7E_xB7-OjlkwIwdvF4MOzQYo_5yWgHn22OAwmYJyz5gxqEG1bra3V1mpTzDlh_zKGgV6J6aPeiOmVmAamF2KL7P3fK76IfiP6kwGXQz16TDpbvx7V-YR20i76_0_4BfKhrBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2105039949</pqid></control><display><type>article</type><title>A sparse representation and dictionary learning based algorithm for image restoration in the presence of Rician noise</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chen, Wensheng ; You, Jie ; Chen, Bo ; Pan, Binbin ; Li, Lihong ; Pomeroy, Marc ; Liang, Zhengrong</creator><creatorcontrib>Chen, Wensheng ; You, Jie ; Chen, Bo ; Pan, Binbin ; Li, Lihong ; Pomeroy, Marc ; Liang, Zhengrong</creatorcontrib><description>Rician noise removal for Magnetic Resonance Imaging (MRI) is very important because the MRI has been widely used in various clinical applications and the associated Rician noise deteriorates the image quality and causes errors in interpreting the images. Great efforts have recently been devoted to develop the corresponding noise-removal algorithms, particularly the development based on the newly-established Total Variation (TV) theorem. However, all the TV-based algorithms depend mainly on the gradient information and have been shown to produce the so called “blocky” artifact, which also deteriorates the image quality and causes image interpretation errors. In order to avoid producing the artifact, this paper presents a new de-noising model based on sparse representation and dictionary learning. The Split Bregman Iteration strategy is employed to implement the model. Furthermore, an appropriate dictionary is designed by the use of the Kernel Singular Value Decomposition method, resulting in a new Rician noise removal algorithm. Compared with other de-noising algorithms, the presented new algorithm can achieve superior performance, in terms of quantitative measures of the Structural Similarity Index and Peak Signal to Noise Ratio, by a series of experiments using different images in the presence of Rician noise.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2018.01.066</identifier><identifier>PMID: 30214129</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>De-noising ; Dictionaries ; Rician noise ; Sparse representations</subject><ispartof>Neurocomputing (Amsterdam), 2018-01, Vol.286, p.130-140</ispartof><rights>2018 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-80df2d57661b74a96325e1a80a48c0073ebc63be24b2de48420569b8f39f26b23</citedby><cites>FETCH-LOGICAL-c500t-80df2d57661b74a96325e1a80a48c0073ebc63be24b2de48420569b8f39f26b23</cites><orcidid>0000-0003-2970-4813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925231218300997$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30214129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Wensheng</creatorcontrib><creatorcontrib>You, Jie</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Pan, Binbin</creatorcontrib><creatorcontrib>Li, Lihong</creatorcontrib><creatorcontrib>Pomeroy, Marc</creatorcontrib><creatorcontrib>Liang, Zhengrong</creatorcontrib><title>A sparse representation and dictionary learning based algorithm for image restoration in the presence of Rician noise</title><title>Neurocomputing (Amsterdam)</title><addtitle>Neurocomputing</addtitle><description>Rician noise removal for Magnetic Resonance Imaging (MRI) is very important because the MRI has been widely used in various clinical applications and the associated Rician noise deteriorates the image quality and causes errors in interpreting the images. Great efforts have recently been devoted to develop the corresponding noise-removal algorithms, particularly the development based on the newly-established Total Variation (TV) theorem. However, all the TV-based algorithms depend mainly on the gradient information and have been shown to produce the so called “blocky” artifact, which also deteriorates the image quality and causes image interpretation errors. In order to avoid producing the artifact, this paper presents a new de-noising model based on sparse representation and dictionary learning. The Split Bregman Iteration strategy is employed to implement the model. Furthermore, an appropriate dictionary is designed by the use of the Kernel Singular Value Decomposition method, resulting in a new Rician noise removal algorithm. Compared with other de-noising algorithms, the presented new algorithm can achieve superior performance, in terms of quantitative measures of the Structural Similarity Index and Peak Signal to Noise Ratio, by a series of experiments using different images in the presence of Rician noise.</description><subject>De-noising</subject><subject>Dictionaries</subject><subject>Rician noise</subject><subject>Sparse representations</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhUVpaDZJ_0EpOvZidyTZsnwphNA2hUChJGchS-NdLba0lexA_n1tnKbtpScNaN6befMR8o5ByYDJj8cy4GzjWHJgqgRWgpSvyI6phheKK_ma7KDldcEF4-fkIucjAGsYb9-QcwGcVUu5I_M1zSeTMtKEp4QZw2QmHwM1wVHn7Vqb9EQHNCn4sKedyeioGfYx-ekw0j4m6kezXw3yFNOm9oFOB6Sbo0Uae_rDW28CDdFnvCJnvRkyvn1-L8nDl8_3N7fF3fev326u7wpbA0yFAtdzVzdSsq6pTCsFr5EZBaZSFqAR2FkpOuRVxx1WquJQy7ZTvWh7LjsuLsmnzfc0dyM6u6RLZtCntGycnnQ0Xv_7E_xB7-OjlkwIwdvF4MOzQYo_5yWgHn22OAwmYJyz5gxqEG1bra3V1mpTzDlh_zKGgV6J6aPeiOmVmAamF2KL7P3fK76IfiP6kwGXQz16TDpbvx7V-YR20i76_0_4BfKhrBw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Chen, Wensheng</creator><creator>You, Jie</creator><creator>Chen, Bo</creator><creator>Pan, Binbin</creator><creator>Li, Lihong</creator><creator>Pomeroy, Marc</creator><creator>Liang, Zhengrong</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2970-4813</orcidid></search><sort><creationdate>20180101</creationdate><title>A sparse representation and dictionary learning based algorithm for image restoration in the presence of Rician noise</title><author>Chen, Wensheng ; You, Jie ; Chen, Bo ; Pan, Binbin ; Li, Lihong ; Pomeroy, Marc ; Liang, Zhengrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-80df2d57661b74a96325e1a80a48c0073ebc63be24b2de48420569b8f39f26b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>De-noising</topic><topic>Dictionaries</topic><topic>Rician noise</topic><topic>Sparse representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wensheng</creatorcontrib><creatorcontrib>You, Jie</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Pan, Binbin</creatorcontrib><creatorcontrib>Li, Lihong</creatorcontrib><creatorcontrib>Pomeroy, Marc</creatorcontrib><creatorcontrib>Liang, Zhengrong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wensheng</au><au>You, Jie</au><au>Chen, Bo</au><au>Pan, Binbin</au><au>Li, Lihong</au><au>Pomeroy, Marc</au><au>Liang, Zhengrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sparse representation and dictionary learning based algorithm for image restoration in the presence of Rician noise</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><addtitle>Neurocomputing</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>286</volume><spage>130</spage><epage>140</epage><pages>130-140</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>Rician noise removal for Magnetic Resonance Imaging (MRI) is very important because the MRI has been widely used in various clinical applications and the associated Rician noise deteriorates the image quality and causes errors in interpreting the images. Great efforts have recently been devoted to develop the corresponding noise-removal algorithms, particularly the development based on the newly-established Total Variation (TV) theorem. However, all the TV-based algorithms depend mainly on the gradient information and have been shown to produce the so called “blocky” artifact, which also deteriorates the image quality and causes image interpretation errors. In order to avoid producing the artifact, this paper presents a new de-noising model based on sparse representation and dictionary learning. The Split Bregman Iteration strategy is employed to implement the model. Furthermore, an appropriate dictionary is designed by the use of the Kernel Singular Value Decomposition method, resulting in a new Rician noise removal algorithm. Compared with other de-noising algorithms, the presented new algorithm can achieve superior performance, in terms of quantitative measures of the Structural Similarity Index and Peak Signal to Noise Ratio, by a series of experiments using different images in the presence of Rician noise.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30214129</pmid><doi>10.1016/j.neucom.2018.01.066</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2970-4813</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2018-01, Vol.286, p.130-140 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6133329 |
source | Elsevier ScienceDirect Journals Complete |
subjects | De-noising Dictionaries Rician noise Sparse representations |
title | A sparse representation and dictionary learning based algorithm for image restoration in the presence of Rician noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sparse%20representation%20and%20dictionary%20learning%20based%20algorithm%20for%20image%20restoration%20in%20the%20presence%20of%20Rician%20noise&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Chen,%20Wensheng&rft.date=2018-01-01&rft.volume=286&rft.spage=130&rft.epage=140&rft.pages=130-140&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2018.01.066&rft_dat=%3Cproquest_pubme%3E2105039949%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2105039949&rft_id=info:pmid/30214129&rft_els_id=S0925231218300997&rfr_iscdi=true |