LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS

We propose a general Principal Orthogonal complEment Thresholding (POET) framework for large-scale covariance matrix estimation based on the approximate factor model. A set of high-level sufficient conditions for the procedure to achieve optimal rates of convergence under different matrix norms is e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2018-08, Vol.46 (4), p.1383-1414
Hauptverfasser: Fan, Jianqing, Liu, Han, Wang, Weichen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1414
container_issue 4
container_start_page 1383
container_title The Annals of statistics
container_volume 46
creator Fan, Jianqing
Liu, Han
Wang, Weichen
description We propose a general Principal Orthogonal complEment Thresholding (POET) framework for large-scale covariance matrix estimation based on the approximate factor model. A set of high-level sufficient conditions for the procedure to achieve optimal rates of convergence under different matrix norms is established to better understand how POET works. Such a framework allows us to recover existing results for sub-Gaussian data in a more transparent way that only depends on the concentration properties of the sample covariance matrix. As a new theoretical contribution, for the first time, such a framework allows us to exploit conditional sparsity covariance structure for the heavy-tailed data. In particular, for the elliptical distribution, we propose a robust estimator based on the marginal and spatial Kendall’s tau to satisfy these conditions. In addition, we study conditional graphical model under the same framework. The technical tools developed in this paper are of general interest to high-dimensional principal component analysis. Thorough numerical results are also provided to back up the developed theory.
doi_str_mv 10.1214/17-AOS1588
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6133289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26542831</jstor_id><sourcerecordid>26542831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-585d37d2a7049bf491ccb6e41e6c841b06a254ee80a704f34fed301608baf28f3</originalsourceid><addsrcrecordid>eNpd0U1Lw0AQBuBFFFurF-9KwIsI0dnPbECEENM2kDbSpl6XJN1oS9vUbCr4701pLeppD_PMyywvQpcY7jHB7AE7thePMZfyCLUJFtKWrhDHqA3ggs2pYC10ZswcALjL6ClqUWj2wOVt9Bh5o15g-fGrNwq9oR9YwTgJB14SxkMr6Y_iSa9vBVEUviSh70VW1_OTeGQN4ucgGp-jkyJdGH2xfzto0g0Sv29HcW-r7ZwJt7a55FPqTEnqAHOzgrk4zzOhGdYilwxnIFLCmdYStqKgrNBTCliAzNKCyIJ20NMud73Jlnqa61VdpQu1rmbLtPpSZTpTfyer2bt6Kz-VwJQS6TYBt_uAqvzYaFOr5czkerFIV7rcGEUwcGAgHaehN__ovNxUq-Z7WyUdJggVjbrbqbwqjal0cTgGg9qWorCj9qU0-Pr3-Qf600IDrnZgbuqyOsyJ4IxIiuk3DHKKHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108746236</pqid></control><display><type>article</type><title>LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Project Euclid Complete</source><creator>Fan, Jianqing ; Liu, Han ; Wang, Weichen</creator><creatorcontrib>Fan, Jianqing ; Liu, Han ; Wang, Weichen</creatorcontrib><description>We propose a general Principal Orthogonal complEment Thresholding (POET) framework for large-scale covariance matrix estimation based on the approximate factor model. A set of high-level sufficient conditions for the procedure to achieve optimal rates of convergence under different matrix norms is established to better understand how POET works. Such a framework allows us to recover existing results for sub-Gaussian data in a more transparent way that only depends on the concentration properties of the sample covariance matrix. As a new theoretical contribution, for the first time, such a framework allows us to exploit conditional sparsity covariance structure for the heavy-tailed data. In particular, for the elliptical distribution, we propose a robust estimator based on the marginal and spatial Kendall’s tau to satisfy these conditions. In addition, we study conditional graphical model under the same framework. The technical tools developed in this paper are of general interest to high-dimensional principal component analysis. Thorough numerical results are also provided to back up the developed theory.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/17-AOS1588</identifier><identifier>PMID: 30214095</identifier><language>eng</language><publisher>United States: Institute of Mathematical Statistics</publisher><subject>Covariance matrix ; Dimensional analysis ; Estimating techniques ; Mathematical models ; Matrix ; Norms ; Principal components analysis ; Robustness (mathematics) ; Studies ; Variance analysis</subject><ispartof>The Annals of statistics, 2018-08, Vol.46 (4), p.1383-1414</ispartof><rights>Institute of Mathematical Statistics, 2018</rights><rights>Copyright Institute of Mathematical Statistics Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-585d37d2a7049bf491ccb6e41e6c841b06a254ee80a704f34fed301608baf28f3</citedby><cites>FETCH-LOGICAL-c469t-585d37d2a7049bf491ccb6e41e6c841b06a254ee80a704f34fed301608baf28f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26542831$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26542831$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30214095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Jianqing</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Wang, Weichen</creatorcontrib><title>LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS</title><title>The Annals of statistics</title><addtitle>Ann Stat</addtitle><description>We propose a general Principal Orthogonal complEment Thresholding (POET) framework for large-scale covariance matrix estimation based on the approximate factor model. A set of high-level sufficient conditions for the procedure to achieve optimal rates of convergence under different matrix norms is established to better understand how POET works. Such a framework allows us to recover existing results for sub-Gaussian data in a more transparent way that only depends on the concentration properties of the sample covariance matrix. As a new theoretical contribution, for the first time, such a framework allows us to exploit conditional sparsity covariance structure for the heavy-tailed data. In particular, for the elliptical distribution, we propose a robust estimator based on the marginal and spatial Kendall’s tau to satisfy these conditions. In addition, we study conditional graphical model under the same framework. The technical tools developed in this paper are of general interest to high-dimensional principal component analysis. Thorough numerical results are also provided to back up the developed theory.</description><subject>Covariance matrix</subject><subject>Dimensional analysis</subject><subject>Estimating techniques</subject><subject>Mathematical models</subject><subject>Matrix</subject><subject>Norms</subject><subject>Principal components analysis</subject><subject>Robustness (mathematics)</subject><subject>Studies</subject><subject>Variance analysis</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0U1Lw0AQBuBFFFurF-9KwIsI0dnPbECEENM2kDbSpl6XJN1oS9vUbCr4701pLeppD_PMyywvQpcY7jHB7AE7thePMZfyCLUJFtKWrhDHqA3ggs2pYC10ZswcALjL6ClqUWj2wOVt9Bh5o15g-fGrNwq9oR9YwTgJB14SxkMr6Y_iSa9vBVEUviSh70VW1_OTeGQN4ucgGp-jkyJdGH2xfzto0g0Sv29HcW-r7ZwJt7a55FPqTEnqAHOzgrk4zzOhGdYilwxnIFLCmdYStqKgrNBTCliAzNKCyIJ20NMud73Jlnqa61VdpQu1rmbLtPpSZTpTfyer2bt6Kz-VwJQS6TYBt_uAqvzYaFOr5czkerFIV7rcGEUwcGAgHaehN__ovNxUq-Z7WyUdJggVjbrbqbwqjal0cTgGg9qWorCj9qU0-Pr3-Qf600IDrnZgbuqyOsyJ4IxIiuk3DHKKHw</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Fan, Jianqing</creator><creator>Liu, Han</creator><creator>Wang, Weichen</creator><general>Institute of Mathematical Statistics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180801</creationdate><title>LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS</title><author>Fan, Jianqing ; Liu, Han ; Wang, Weichen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-585d37d2a7049bf491ccb6e41e6c841b06a254ee80a704f34fed301608baf28f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Covariance matrix</topic><topic>Dimensional analysis</topic><topic>Estimating techniques</topic><topic>Mathematical models</topic><topic>Matrix</topic><topic>Norms</topic><topic>Principal components analysis</topic><topic>Robustness (mathematics)</topic><topic>Studies</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jianqing</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Wang, Weichen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jianqing</au><au>Liu, Han</au><au>Wang, Weichen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS</atitle><jtitle>The Annals of statistics</jtitle><addtitle>Ann Stat</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>46</volume><issue>4</issue><spage>1383</spage><epage>1414</epage><pages>1383-1414</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>We propose a general Principal Orthogonal complEment Thresholding (POET) framework for large-scale covariance matrix estimation based on the approximate factor model. A set of high-level sufficient conditions for the procedure to achieve optimal rates of convergence under different matrix norms is established to better understand how POET works. Such a framework allows us to recover existing results for sub-Gaussian data in a more transparent way that only depends on the concentration properties of the sample covariance matrix. As a new theoretical contribution, for the first time, such a framework allows us to exploit conditional sparsity covariance structure for the heavy-tailed data. In particular, for the elliptical distribution, we propose a robust estimator based on the marginal and spatial Kendall’s tau to satisfy these conditions. In addition, we study conditional graphical model under the same framework. The technical tools developed in this paper are of general interest to high-dimensional principal component analysis. Thorough numerical results are also provided to back up the developed theory.</abstract><cop>United States</cop><pub>Institute of Mathematical Statistics</pub><pmid>30214095</pmid><doi>10.1214/17-AOS1588</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2018-08, Vol.46 (4), p.1383-1414
issn 0090-5364
2168-8966
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6133289
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Project Euclid Complete
subjects Covariance matrix
Dimensional analysis
Estimating techniques
Mathematical models
Matrix
Norms
Principal components analysis
Robustness (mathematics)
Studies
Variance analysis
title LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LARGE%20COVARIANCE%20ESTIMATION%20THROUGH%20ELLIPTICAL%20FACTOR%20MODELS&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Fan,%20Jianqing&rft.date=2018-08-01&rft.volume=46&rft.issue=4&rft.spage=1383&rft.epage=1414&rft.pages=1383-1414&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/17-AOS1588&rft_dat=%3Cjstor_pubme%3E26542831%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108746236&rft_id=info:pmid/30214095&rft_jstor_id=26542831&rfr_iscdi=true