LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS
We propose a general Principal Orthogonal complEment Thresholding (POET) framework for large-scale covariance matrix estimation based on the approximate factor model. A set of high-level sufficient conditions for the procedure to achieve optimal rates of convergence under different matrix norms is e...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2018-08, Vol.46 (4), p.1383-1414 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1414 |
---|---|
container_issue | 4 |
container_start_page | 1383 |
container_title | The Annals of statistics |
container_volume | 46 |
creator | Fan, Jianqing Liu, Han Wang, Weichen |
description | We propose a general Principal Orthogonal complEment Thresholding (POET) framework for large-scale covariance matrix estimation based on the approximate factor model. A set of high-level sufficient conditions for the procedure to achieve optimal rates of convergence under different matrix norms is established to better understand how POET works. Such a framework allows us to recover existing results for sub-Gaussian data in a more transparent way that only depends on the concentration properties of the sample covariance matrix. As a new theoretical contribution, for the first time, such a framework allows us to exploit conditional sparsity covariance structure for the heavy-tailed data. In particular, for the elliptical distribution, we propose a robust estimator based on the marginal and spatial Kendall’s tau to satisfy these conditions. In addition, we study conditional graphical model under the same framework. The technical tools developed in this paper are of general interest to high-dimensional principal component analysis. Thorough numerical results are also provided to back up the developed theory. |
doi_str_mv | 10.1214/17-AOS1588 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6133289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26542831</jstor_id><sourcerecordid>26542831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-585d37d2a7049bf491ccb6e41e6c841b06a254ee80a704f34fed301608baf28f3</originalsourceid><addsrcrecordid>eNpd0U1Lw0AQBuBFFFurF-9KwIsI0dnPbECEENM2kDbSpl6XJN1oS9vUbCr4701pLeppD_PMyywvQpcY7jHB7AE7thePMZfyCLUJFtKWrhDHqA3ggs2pYC10ZswcALjL6ClqUWj2wOVt9Bh5o15g-fGrNwq9oR9YwTgJB14SxkMr6Y_iSa9vBVEUviSh70VW1_OTeGQN4ucgGp-jkyJdGH2xfzto0g0Sv29HcW-r7ZwJt7a55FPqTEnqAHOzgrk4zzOhGdYilwxnIFLCmdYStqKgrNBTCliAzNKCyIJ20NMud73Jlnqa61VdpQu1rmbLtPpSZTpTfyer2bt6Kz-VwJQS6TYBt_uAqvzYaFOr5czkerFIV7rcGEUwcGAgHaehN__ovNxUq-Z7WyUdJggVjbrbqbwqjal0cTgGg9qWorCj9qU0-Pr3-Qf600IDrnZgbuqyOsyJ4IxIiuk3DHKKHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108746236</pqid></control><display><type>article</type><title>LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Project Euclid Complete</source><creator>Fan, Jianqing ; Liu, Han ; Wang, Weichen</creator><creatorcontrib>Fan, Jianqing ; Liu, Han ; Wang, Weichen</creatorcontrib><description>We propose a general Principal Orthogonal complEment Thresholding (POET) framework for large-scale covariance matrix estimation based on the approximate factor model. A set of high-level sufficient conditions for the procedure to achieve optimal rates of convergence under different matrix norms is established to better understand how POET works. Such a framework allows us to recover existing results for sub-Gaussian data in a more transparent way that only depends on the concentration properties of the sample covariance matrix. As a new theoretical contribution, for the first time, such a framework allows us to exploit conditional sparsity covariance structure for the heavy-tailed data. In particular, for the elliptical distribution, we propose a robust estimator based on the marginal and spatial Kendall’s tau to satisfy these conditions. In addition, we study conditional graphical model under the same framework. The technical tools developed in this paper are of general interest to high-dimensional principal component analysis. Thorough numerical results are also provided to back up the developed theory.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/17-AOS1588</identifier><identifier>PMID: 30214095</identifier><language>eng</language><publisher>United States: Institute of Mathematical Statistics</publisher><subject>Covariance matrix ; Dimensional analysis ; Estimating techniques ; Mathematical models ; Matrix ; Norms ; Principal components analysis ; Robustness (mathematics) ; Studies ; Variance analysis</subject><ispartof>The Annals of statistics, 2018-08, Vol.46 (4), p.1383-1414</ispartof><rights>Institute of Mathematical Statistics, 2018</rights><rights>Copyright Institute of Mathematical Statistics Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-585d37d2a7049bf491ccb6e41e6c841b06a254ee80a704f34fed301608baf28f3</citedby><cites>FETCH-LOGICAL-c469t-585d37d2a7049bf491ccb6e41e6c841b06a254ee80a704f34fed301608baf28f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26542831$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26542831$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30214095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Jianqing</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Wang, Weichen</creatorcontrib><title>LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS</title><title>The Annals of statistics</title><addtitle>Ann Stat</addtitle><description>We propose a general Principal Orthogonal complEment Thresholding (POET) framework for large-scale covariance matrix estimation based on the approximate factor model. A set of high-level sufficient conditions for the procedure to achieve optimal rates of convergence under different matrix norms is established to better understand how POET works. Such a framework allows us to recover existing results for sub-Gaussian data in a more transparent way that only depends on the concentration properties of the sample covariance matrix. As a new theoretical contribution, for the first time, such a framework allows us to exploit conditional sparsity covariance structure for the heavy-tailed data. In particular, for the elliptical distribution, we propose a robust estimator based on the marginal and spatial Kendall’s tau to satisfy these conditions. In addition, we study conditional graphical model under the same framework. The technical tools developed in this paper are of general interest to high-dimensional principal component analysis. Thorough numerical results are also provided to back up the developed theory.</description><subject>Covariance matrix</subject><subject>Dimensional analysis</subject><subject>Estimating techniques</subject><subject>Mathematical models</subject><subject>Matrix</subject><subject>Norms</subject><subject>Principal components analysis</subject><subject>Robustness (mathematics)</subject><subject>Studies</subject><subject>Variance analysis</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0U1Lw0AQBuBFFFurF-9KwIsI0dnPbECEENM2kDbSpl6XJN1oS9vUbCr4701pLeppD_PMyywvQpcY7jHB7AE7thePMZfyCLUJFtKWrhDHqA3ggs2pYC10ZswcALjL6ClqUWj2wOVt9Bh5o15g-fGrNwq9oR9YwTgJB14SxkMr6Y_iSa9vBVEUviSh70VW1_OTeGQN4ucgGp-jkyJdGH2xfzto0g0Sv29HcW-r7ZwJt7a55FPqTEnqAHOzgrk4zzOhGdYilwxnIFLCmdYStqKgrNBTCliAzNKCyIJ20NMud73Jlnqa61VdpQu1rmbLtPpSZTpTfyer2bt6Kz-VwJQS6TYBt_uAqvzYaFOr5czkerFIV7rcGEUwcGAgHaehN__ovNxUq-Z7WyUdJggVjbrbqbwqjal0cTgGg9qWorCj9qU0-Pr3-Qf600IDrnZgbuqyOsyJ4IxIiuk3DHKKHw</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Fan, Jianqing</creator><creator>Liu, Han</creator><creator>Wang, Weichen</creator><general>Institute of Mathematical Statistics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180801</creationdate><title>LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS</title><author>Fan, Jianqing ; Liu, Han ; Wang, Weichen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-585d37d2a7049bf491ccb6e41e6c841b06a254ee80a704f34fed301608baf28f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Covariance matrix</topic><topic>Dimensional analysis</topic><topic>Estimating techniques</topic><topic>Mathematical models</topic><topic>Matrix</topic><topic>Norms</topic><topic>Principal components analysis</topic><topic>Robustness (mathematics)</topic><topic>Studies</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jianqing</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Wang, Weichen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jianqing</au><au>Liu, Han</au><au>Wang, Weichen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS</atitle><jtitle>The Annals of statistics</jtitle><addtitle>Ann Stat</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>46</volume><issue>4</issue><spage>1383</spage><epage>1414</epage><pages>1383-1414</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>We propose a general Principal Orthogonal complEment Thresholding (POET) framework for large-scale covariance matrix estimation based on the approximate factor model. A set of high-level sufficient conditions for the procedure to achieve optimal rates of convergence under different matrix norms is established to better understand how POET works. Such a framework allows us to recover existing results for sub-Gaussian data in a more transparent way that only depends on the concentration properties of the sample covariance matrix. As a new theoretical contribution, for the first time, such a framework allows us to exploit conditional sparsity covariance structure for the heavy-tailed data. In particular, for the elliptical distribution, we propose a robust estimator based on the marginal and spatial Kendall’s tau to satisfy these conditions. In addition, we study conditional graphical model under the same framework. The technical tools developed in this paper are of general interest to high-dimensional principal component analysis. Thorough numerical results are also provided to back up the developed theory.</abstract><cop>United States</cop><pub>Institute of Mathematical Statistics</pub><pmid>30214095</pmid><doi>10.1214/17-AOS1588</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 2018-08, Vol.46 (4), p.1383-1414 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6133289 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Project Euclid Complete |
subjects | Covariance matrix Dimensional analysis Estimating techniques Mathematical models Matrix Norms Principal components analysis Robustness (mathematics) Studies Variance analysis |
title | LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LARGE%20COVARIANCE%20ESTIMATION%20THROUGH%20ELLIPTICAL%20FACTOR%20MODELS&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Fan,%20Jianqing&rft.date=2018-08-01&rft.volume=46&rft.issue=4&rft.spage=1383&rft.epage=1414&rft.pages=1383-1414&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/17-AOS1588&rft_dat=%3Cjstor_pubme%3E26542831%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108746236&rft_id=info:pmid/30214095&rft_jstor_id=26542831&rfr_iscdi=true |