Quantifying individual specialization using tracking data: a case study on two species of albatrosses

Many predictive models of spatial and temporal distribution (e.g. in response to climate change or species introductions) assume that species have one environmental niche that applies to all individuals. However, there is growing evidence that individuals can have environmental preferences that are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine biology 2018-10, Vol.165 (10), p.152-15, Article 152
Hauptverfasser: Bonnet-Lebrun, A.-S., Phillips, R. A., Manica, A., Rodrigues, A. S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 10
container_start_page 152
container_title Marine biology
container_volume 165
creator Bonnet-Lebrun, A.-S.
Phillips, R. A.
Manica, A.
Rodrigues, A. S. L.
description Many predictive models of spatial and temporal distribution (e.g. in response to climate change or species introductions) assume that species have one environmental niche that applies to all individuals. However, there is growing evidence that individuals can have environmental preferences that are narrower than the species niche. Such individual specialization has mainly been studied in terms of dietary niches, but a recent increase in the availability of individual movement data opens the possibility of extending these analyses to specialisation in environmental preferences. Yet, no study to date on individual specialisation has considered the environmental niche in its multidimensionality. Here we propose a new method for quantifying individual specialisation in multiple dimensions simultaneously. We compare the hypervolumes in n -dimensional environmental niche space of each individual against that of the population, testing for significant differences against a null model. The same method can be applied to a 2-dimensional geographic space to test for site fidelity. We applied this method to test for individual environmental specialisation (across three dimensions: sea surface temperature, eddy kinetic energy, depth) and for site fidelity among satellite-tracked black-browed albatrosses ( Thalassarche melanophris ) and grey-headed albatrosses ( Thalassarche chrysostoma ), during chick-rearing at South Georgia. We found evidence for site fidelity in both species and of environmental specialisation among individual grey-headed but not black-browed albatrosses. Specialisation can affect the resilience of populations affected by natural and anthropogenic changes in the environment, and hence has implications for population dynamics and conservation.
doi_str_mv 10.1007/s00227-018-3408-x
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6132544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A553562911</galeid><sourcerecordid>A553562911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-6c597eab29ab2d207188f2e1452b66e5b53f52f5d9530da4a0d47db4ffddafe13</originalsourceid><addsrcrecordid>eNp1kltv1DAQhSMEotvCD-AFReKFPqT4mgsPlVYVUKSVEBI8W5N4vHXJ2kucLF1-PbZSWlotiqI4nu-ccSYny15RckYJqd4FQhirCkLrggtSFzdPsgUVnBW0avjTbBHLsuC0ZEfZcQjXJL5XjD_PjnjUkYrLRYZfJ3CjNXvr1rl12u6snqDPwxY7C739DaP1Lp9Cqo8DdD_SQsMI73PIOwiYh3HS-zxC4y8_6zDk3uTQtzAOPgQML7JnBvqAL2-fJ9n3jx--XVwWqy-fPl8sV0VXkmYsyk42FULLmnjreEJa14YhFZK1ZYmyldxIZqRuJCcaBBAtKt0KY7QGg5SfZOez73ZqN6g7dPHIvdoOdgPDXnmw6mHF2Su19jtVUs6kENHgdDa4eiS7XK5U2iOM11zUYpeavb1tNvifE4ZRbWzosO_BoZ-CYpTU0ZQxFtE3j9BrPw0ujiJRpCkbTpp7ag09KuuMTwNPpmopJZcla2hqWxyg1ugwfpB3aGzcfsCfHeDjpXFju4MCOgu69PMGNHeDoESl3Kk5dyrmTqXcqZuoef3v4O8Uf4MWATYDIZbcGof7Cfzf9Q8TcuLj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100969309</pqid></control><display><type>article</type><title>Quantifying individual specialization using tracking data: a case study on two species of albatrosses</title><source>SpringerNature Complete Journals</source><creator>Bonnet-Lebrun, A.-S. ; Phillips, R. A. ; Manica, A. ; Rodrigues, A. S. L.</creator><creatorcontrib>Bonnet-Lebrun, A.-S. ; Phillips, R. A. ; Manica, A. ; Rodrigues, A. S. L.</creatorcontrib><description>Many predictive models of spatial and temporal distribution (e.g. in response to climate change or species introductions) assume that species have one environmental niche that applies to all individuals. However, there is growing evidence that individuals can have environmental preferences that are narrower than the species niche. Such individual specialization has mainly been studied in terms of dietary niches, but a recent increase in the availability of individual movement data opens the possibility of extending these analyses to specialisation in environmental preferences. Yet, no study to date on individual specialisation has considered the environmental niche in its multidimensionality. Here we propose a new method for quantifying individual specialisation in multiple dimensions simultaneously. We compare the hypervolumes in n -dimensional environmental niche space of each individual against that of the population, testing for significant differences against a null model. The same method can be applied to a 2-dimensional geographic space to test for site fidelity. We applied this method to test for individual environmental specialisation (across three dimensions: sea surface temperature, eddy kinetic energy, depth) and for site fidelity among satellite-tracked black-browed albatrosses ( Thalassarche melanophris ) and grey-headed albatrosses ( Thalassarche chrysostoma ), during chick-rearing at South Georgia. We found evidence for site fidelity in both species and of environmental specialisation among individual grey-headed but not black-browed albatrosses. Specialisation can affect the resilience of populations affected by natural and anthropogenic changes in the environment, and hence has implications for population dynamics and conservation.</description><identifier>ISSN: 0025-3162</identifier><identifier>EISSN: 1432-1793</identifier><identifier>DOI: 10.1007/s00227-018-3408-x</identifier><identifier>PMID: 30220735</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal territoriality ; Anthropogenic changes ; Anthropogenic factors ; Biodiversity ; Biomedical and Life Sciences ; Bird communities ; Black-browed mollymawk ; Case studies ; Climate change ; Climate models ; Dimensions ; Dynamics ; Eddy kinetic energy ; Environmental changes ; Environmental testing ; Freshwater &amp; Marine Ecology ; Habitat selection ; Individual rearing ; Introduced species ; Kinetic energy ; Life Sciences ; Marine &amp; Freshwater Sciences ; Marine biology ; Methods ; Microbiology ; Niches ; Niches (Ecology) ; Oceanography ; Original Paper ; Population dynamics ; Prediction models ; Satellite tracking ; Satellites ; Sea surface ; Sea surface temperature ; Seabirds ; Site fidelity ; Specialization ; Species ; Temporal distribution ; Two dimensional models ; Zoology</subject><ispartof>Marine biology, 2018-10, Vol.165 (10), p.152-15, Article 152</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Marine Biology is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c609t-6c597eab29ab2d207188f2e1452b66e5b53f52f5d9530da4a0d47db4ffddafe13</citedby><cites>FETCH-LOGICAL-c609t-6c597eab29ab2d207188f2e1452b66e5b53f52f5d9530da4a0d47db4ffddafe13</cites><orcidid>0000-0002-7587-615X ; 0000-0003-4775-0127 ; 0000-0003-1895-450X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00227-018-3408-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00227-018-3408-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30220735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02383484$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnet-Lebrun, A.-S.</creatorcontrib><creatorcontrib>Phillips, R. A.</creatorcontrib><creatorcontrib>Manica, A.</creatorcontrib><creatorcontrib>Rodrigues, A. S. L.</creatorcontrib><title>Quantifying individual specialization using tracking data: a case study on two species of albatrosses</title><title>Marine biology</title><addtitle>Mar Biol</addtitle><addtitle>Mar Biol</addtitle><description>Many predictive models of spatial and temporal distribution (e.g. in response to climate change or species introductions) assume that species have one environmental niche that applies to all individuals. However, there is growing evidence that individuals can have environmental preferences that are narrower than the species niche. Such individual specialization has mainly been studied in terms of dietary niches, but a recent increase in the availability of individual movement data opens the possibility of extending these analyses to specialisation in environmental preferences. Yet, no study to date on individual specialisation has considered the environmental niche in its multidimensionality. Here we propose a new method for quantifying individual specialisation in multiple dimensions simultaneously. We compare the hypervolumes in n -dimensional environmental niche space of each individual against that of the population, testing for significant differences against a null model. The same method can be applied to a 2-dimensional geographic space to test for site fidelity. We applied this method to test for individual environmental specialisation (across three dimensions: sea surface temperature, eddy kinetic energy, depth) and for site fidelity among satellite-tracked black-browed albatrosses ( Thalassarche melanophris ) and grey-headed albatrosses ( Thalassarche chrysostoma ), during chick-rearing at South Georgia. We found evidence for site fidelity in both species and of environmental specialisation among individual grey-headed but not black-browed albatrosses. Specialisation can affect the resilience of populations affected by natural and anthropogenic changes in the environment, and hence has implications for population dynamics and conservation.</description><subject>Animal territoriality</subject><subject>Anthropogenic changes</subject><subject>Anthropogenic factors</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Bird communities</subject><subject>Black-browed mollymawk</subject><subject>Case studies</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Dimensions</subject><subject>Dynamics</subject><subject>Eddy kinetic energy</subject><subject>Environmental changes</subject><subject>Environmental testing</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Habitat selection</subject><subject>Individual rearing</subject><subject>Introduced species</subject><subject>Kinetic energy</subject><subject>Life Sciences</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Marine biology</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Niches</subject><subject>Niches (Ecology)</subject><subject>Oceanography</subject><subject>Original Paper</subject><subject>Population dynamics</subject><subject>Prediction models</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Seabirds</subject><subject>Site fidelity</subject><subject>Specialization</subject><subject>Species</subject><subject>Temporal distribution</subject><subject>Two dimensional models</subject><subject>Zoology</subject><issn>0025-3162</issn><issn>1432-1793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kltv1DAQhSMEotvCD-AFReKFPqT4mgsPlVYVUKSVEBI8W5N4vHXJ2kucLF1-PbZSWlotiqI4nu-ccSYny15RckYJqd4FQhirCkLrggtSFzdPsgUVnBW0avjTbBHLsuC0ZEfZcQjXJL5XjD_PjnjUkYrLRYZfJ3CjNXvr1rl12u6snqDPwxY7C739DaP1Lp9Cqo8DdD_SQsMI73PIOwiYh3HS-zxC4y8_6zDk3uTQtzAOPgQML7JnBvqAL2-fJ9n3jx--XVwWqy-fPl8sV0VXkmYsyk42FULLmnjreEJa14YhFZK1ZYmyldxIZqRuJCcaBBAtKt0KY7QGg5SfZOez73ZqN6g7dPHIvdoOdgPDXnmw6mHF2Su19jtVUs6kENHgdDa4eiS7XK5U2iOM11zUYpeavb1tNvifE4ZRbWzosO_BoZ-CYpTU0ZQxFtE3j9BrPw0ujiJRpCkbTpp7ag09KuuMTwNPpmopJZcla2hqWxyg1ugwfpB3aGzcfsCfHeDjpXFju4MCOgu69PMGNHeDoESl3Kk5dyrmTqXcqZuoef3v4O8Uf4MWATYDIZbcGof7Cfzf9Q8TcuLj</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Bonnet-Lebrun, A.-S.</creator><creator>Phillips, R. A.</creator><creator>Manica, A.</creator><creator>Rodrigues, A. S. L.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7XB</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7587-615X</orcidid><orcidid>https://orcid.org/0000-0003-4775-0127</orcidid><orcidid>https://orcid.org/0000-0003-1895-450X</orcidid></search><sort><creationdate>20181001</creationdate><title>Quantifying individual specialization using tracking data: a case study on two species of albatrosses</title><author>Bonnet-Lebrun, A.-S. ; Phillips, R. A. ; Manica, A. ; Rodrigues, A. S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-6c597eab29ab2d207188f2e1452b66e5b53f52f5d9530da4a0d47db4ffddafe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal territoriality</topic><topic>Anthropogenic changes</topic><topic>Anthropogenic factors</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Bird communities</topic><topic>Black-browed mollymawk</topic><topic>Case studies</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Dimensions</topic><topic>Dynamics</topic><topic>Eddy kinetic energy</topic><topic>Environmental changes</topic><topic>Environmental testing</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Habitat selection</topic><topic>Individual rearing</topic><topic>Introduced species</topic><topic>Kinetic energy</topic><topic>Life Sciences</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Marine biology</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Niches</topic><topic>Niches (Ecology)</topic><topic>Oceanography</topic><topic>Original Paper</topic><topic>Population dynamics</topic><topic>Prediction models</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Seabirds</topic><topic>Site fidelity</topic><topic>Specialization</topic><topic>Species</topic><topic>Temporal distribution</topic><topic>Two dimensional models</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnet-Lebrun, A.-S.</creatorcontrib><creatorcontrib>Phillips, R. A.</creatorcontrib><creatorcontrib>Manica, A.</creatorcontrib><creatorcontrib>Rodrigues, A. S. L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Marine biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnet-Lebrun, A.-S.</au><au>Phillips, R. A.</au><au>Manica, A.</au><au>Rodrigues, A. S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying individual specialization using tracking data: a case study on two species of albatrosses</atitle><jtitle>Marine biology</jtitle><stitle>Mar Biol</stitle><addtitle>Mar Biol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>165</volume><issue>10</issue><spage>152</spage><epage>15</epage><pages>152-15</pages><artnum>152</artnum><issn>0025-3162</issn><eissn>1432-1793</eissn><abstract>Many predictive models of spatial and temporal distribution (e.g. in response to climate change or species introductions) assume that species have one environmental niche that applies to all individuals. However, there is growing evidence that individuals can have environmental preferences that are narrower than the species niche. Such individual specialization has mainly been studied in terms of dietary niches, but a recent increase in the availability of individual movement data opens the possibility of extending these analyses to specialisation in environmental preferences. Yet, no study to date on individual specialisation has considered the environmental niche in its multidimensionality. Here we propose a new method for quantifying individual specialisation in multiple dimensions simultaneously. We compare the hypervolumes in n -dimensional environmental niche space of each individual against that of the population, testing for significant differences against a null model. The same method can be applied to a 2-dimensional geographic space to test for site fidelity. We applied this method to test for individual environmental specialisation (across three dimensions: sea surface temperature, eddy kinetic energy, depth) and for site fidelity among satellite-tracked black-browed albatrosses ( Thalassarche melanophris ) and grey-headed albatrosses ( Thalassarche chrysostoma ), during chick-rearing at South Georgia. We found evidence for site fidelity in both species and of environmental specialisation among individual grey-headed but not black-browed albatrosses. Specialisation can affect the resilience of populations affected by natural and anthropogenic changes in the environment, and hence has implications for population dynamics and conservation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30220735</pmid><doi>10.1007/s00227-018-3408-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7587-615X</orcidid><orcidid>https://orcid.org/0000-0003-4775-0127</orcidid><orcidid>https://orcid.org/0000-0003-1895-450X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-3162
ispartof Marine biology, 2018-10, Vol.165 (10), p.152-15, Article 152
issn 0025-3162
1432-1793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6132544
source SpringerNature Complete Journals
subjects Animal territoriality
Anthropogenic changes
Anthropogenic factors
Biodiversity
Biomedical and Life Sciences
Bird communities
Black-browed mollymawk
Case studies
Climate change
Climate models
Dimensions
Dynamics
Eddy kinetic energy
Environmental changes
Environmental testing
Freshwater & Marine Ecology
Habitat selection
Individual rearing
Introduced species
Kinetic energy
Life Sciences
Marine & Freshwater Sciences
Marine biology
Methods
Microbiology
Niches
Niches (Ecology)
Oceanography
Original Paper
Population dynamics
Prediction models
Satellite tracking
Satellites
Sea surface
Sea surface temperature
Seabirds
Site fidelity
Specialization
Species
Temporal distribution
Two dimensional models
Zoology
title Quantifying individual specialization using tracking data: a case study on two species of albatrosses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20individual%20specialization%20using%20tracking%20data:%20a%20case%20study%20on%20two%20species%20of%20albatrosses&rft.jtitle=Marine%20biology&rft.au=Bonnet-Lebrun,%20A.-S.&rft.date=2018-10-01&rft.volume=165&rft.issue=10&rft.spage=152&rft.epage=15&rft.pages=152-15&rft.artnum=152&rft.issn=0025-3162&rft.eissn=1432-1793&rft_id=info:doi/10.1007/s00227-018-3408-x&rft_dat=%3Cgale_pubme%3EA553562911%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100969309&rft_id=info:pmid/30220735&rft_galeid=A553562911&rfr_iscdi=true